161 research outputs found

    Vitellogenin Dynamics and Reproductive Morphology at Sexual Maturity of Philippine Mallard (Anas Platyrhynchos Domesticus L) Fed with Zinc Supplemented Diet

    Get PDF
    The vitellogenin (Vtg) is a precursor for the synthesis of egg yolk protein. Feeding with zinc-supplemented diet is hypothesized to increase the circulating Vtg thereby enhancing reproductive development. A total of 80 ducks,aged 16 weeks old, were randomly assigned to treatment groups; namely: group A with 40 ducks fed with 30 ppm zinc-supplemented diet (zinc positive) and group B with 40 ducks fed with no added zinc (zinc negative). Thecirculating Vtg at sexual maturity (155.11±10.83 days old) were determined from the blood sera. The sera were assayed for Vtg in duplicate using 96–well microplate and read the optical density at 415nm. The zinc concentrationof the samples was calculated using the nonlinear regression =OD = a x [Zn2+] / (b + [Zn2+]. Results show that the circulating Vtg in the blood sera of ducks at sexual maturity were 0.69±0.07 Gg Zn dL-1. The feeding of zinc-treateddiet had no significant influenced on the concentration of circulating Vtg. There was also insignificant difference in the reproductive morphology of ducks fed with or without added zinc. The Vtg concentration had no correlation withreproductive parameters but found to be positively correlated with liver weight (H=0.21) and negatively correlated with body weight (H = -0.24)

    Peripheral blood mitochondrial DNA content in relation to circulating metabolites and inflammatory markers: a population study

    Get PDF
    Mitochondrial DNA (mtDNA) content might undergo significant changes caused by metabolic derangements, oxidative stress and inflammation that lead to development and progression of cardiovascular diseases. We, therefore, investigated in a general population the association of peripheral blood mtDNA content with circulating metabolites and inflammatory markers. We examined 310 subjects (50.6% women; mean age, 53.3 years) randomly selected from a Flemish population. Relative mtDNA content was measured by quantitative real-time PCR in peripheral blood cells. Peak circulating metabolites were quantified using nuclear magnetic resonance spectroscopy. The level of inflammation was assessed via established inflammatory markers. Using Partial Least Squares analysis, we constructed 3 latent factors from the 44 measured metabolites that explained 62.5% and 8.5% of the variance in the contributing metabolites and the mtDNA content, respectively. With adjustments applied, mtDNA content was positively associated with the first latent factor (P = 0.002). We identified 6 metabolites with a major impact on the construction of this latent factor including HDL3 apolipoproteins, tyrosine, fatty acid with αCH2, creatinine, β-glucose and valine. We summarized them into a single composite metabolite score. We observed a negative association between the composite metabolic score and mtDNA content (P = 0.001). We also found that mtDNA content was inversely associated with inflammatory markers including hs-CRP, hs-IL6, white blood cell and neutrophil counts as well as neutrophil-to-lymphocyte ratio (P≤0.0024). We demonstrated that in a general population relative peripheral blood mtDNA content was associated with circulating metabolites indicative of perturbed lipid metabolism and with inflammatory biomarkers

    Microplastic in the stomachs of open-ocean and deep-sea fishes of the North-East Atlantic

    Get PDF
    This is the author accepted versionThe presence of microplastic in marine fishes has been well documented but few studies have directly examined differences between fishes occupying contrasting environmental compartments. In the present study, we investigated the gut contents of 390 fishes belonging to three pelagic (blue jack mackerel, chub mackerel, skipjack tuna) and two deep-sea species (blackbelly rosefish, blackspot seabream) from the Azores archipelago, North-East Atlantic for microplastic contamination. Our results revealed that pelagic species had significantly more microplastic than the deep-water species. In all of the species studied, fragments were the most common plastic shape recovered and we found a significant difference in the type of polymer between the pelagic and deep-water species. In deep-sea fish we found almost exclusively polypropylene, whereas in the pelagic fish, polyethylene was the most abundant polymer type. Overall, the proportion of fish containing plastic items varied across our study species from 3.7% to 16.7% of individuals sampled, and the average abundance of plastic items ranged from 0.04 to 0.22 per individual (the maximum was 4 items recovered in one stomach). Despite the proximity of the Azores archipelago to the North Atlantic subtropical gyre, a region of elevated plastic abundance, the proportion of individuals containing plastic (9.49%) were comparable with data reported elsewhere.Natural Environment Research Council (NERC

    Alternatives to the use of synthetic organic coagulant aids in drinking water treatment: improvements in the application of the crude extract of Moringa oleifera seed

    Full text link
    [EN] Drinking water treatment is a process based on multiple stages that has a main objective to provide water safe enough to be consumed by humans. Coagulation–flocculation is used to remove colloidal and suspended solids. This process improves the performance of subsequent stages (as sedimentation or filtration) as well as the water quality with a desired end-use. For many years, inorganic and organic synthetic polyelectrolytes have been used in coagulation–flocculation processes. However, its use has been deeply studied recently to determine the potential impact of residual concentration of these substances on human health and the environment. Strict regulations limit the concentration of free residual monomer after the addition of polyacrylamide (PAM) in drinking water treatment and study the effect of interaction of the residues with disinfection products. Therefore, in the last years there has been a resurgence of interest to use natural materials with the same performance that synthetic, but with lower hazard for the environment and humans. This work studies the use of the flocculant extracted from Moringa oleifera seed, in combination with polyaluminum chloride (PAC). The performance is compared with the combination PAC–PAM in terms of coagulant activity and physical–chemical quality of the water treated. Jar test was carried out using two types of natural water (with presence of bentonites) and different combinations of coagulant and flocculants. Results show that coagulant activity of PAC–Moringa combination is comparable with the results obtained with PAC–PAM, reducing initial turbidity up to 90% in all the tests. With regard to physical–chemical quality of the treated water, PAC–Moringa produces values under the drinking water quality standards for all the parameters analyzed. It is remarkable that the decrease of 50% in the trihalomethanes formation potential rate shown for PAC–Moringa combination, observed when treating natural water with presence of bentonites. Therefore, the results obtain in this work encourage the use of Moringa oleifera extract as a natural, low cost, effective, and low-toxicity alternative to the use of synthetic organic polyelectrolytes as polyacrylamide for drinking water treatment.This research has been done in the framework of the project “Study of synthetic and natural coagulants susceptible of being used in the water treatment plant of “Ribarroja del Turia” (Valencia) as substitutes for polyacrylamide”. The authors wish to thank the staff of the laboratory of the Department of Water Quality of the company “Aguas de Valencia” located in La Presa (Manises) for its collaboration in the water tests of this work.García Fayos, B.; Arnal Arnal, JM.; Monforte Monleon, L.; Sancho Fernández, MP. (2015). Alternatives to the use of synthetic organic coagulant aids in drinking water treatment: improvements in the application of the crude extract of Moringa oleifera seed. Desalination and Water Treatment. 55(13):3635-3645. doi:10.1080/19443994.2014.939487S363536455513Van Benschoten, J. E., & Edzwald, J. K. (1990). Chemical aspects of coagulation using aluminum salts—I. Hydrolytic reactions of alum and polyaluminum chloride. Water Research, 24(12), 1519-1526. doi:10.1016/0043-1354(90)90086-lBOLTO, B. (1995). Soluble polymers in water purification. Progress in Polymer Science, 20(6), 987-1041. doi:10.1016/0079-6700(95)00010-dCrapper, D. R., Krishnan, S. S., & Dalton, A. J. (1973). Brain Aluminum Distribution in Alzheimer’s Disease and Experimental Neurofibrillary Degeneration. Science, 180(4085), 511-513. doi:10.1126/science.180.4085.511Davison, A. M., Oli, H., Walker, G. S., & Lewins, A. M. (1982). WATER SUPPLY ALUMINIUM CONCENTRATION, DIALYSIS DEMENTIA, AND EFFECT OF REVERSE-OSMOSIS WATER TREATMENT. The Lancet, 320(8302), 785-787. doi:10.1016/s0140-6736(82)92678-2Rondeau, V., Commenges, D., Jacqmin-Gadda, H., & Dartigues, J.-F. (2000). Relation between Aluminum Concentrations in Drinking Water and Alzheimer’s Disease: An 8-year Follow-up Study. American Journal of Epidemiology, 152(1), 59-66. doi:10.1093/aje/152.1.59Rondeau, V. (2001). RE: ALUMINUM IN DRINKING WATER AND COGNITIVE DECLINE IN ELDERLY SUBJECTS: THE PAQUID COHORT. American Journal of Epidemiology, 154(3), 288-a-290. doi:10.1093/aje/154.3.288-aGauthier, E., Fortier, I., Courchesne, F., Pepin, P., Mortimer, J., & Gauvreau, D. (2000). Aluminum Forms in Drinking Water and Risk of Alzheimer’s Disease. Environmental Research, 84(3), 234-246. doi:10.1006/enrs.2000.4101Kawamura, S. (1976). Considerations on Improving Flocculation. Journal - American Water Works Association, 68(6), 328-336. doi:10.1002/j.1551-8833.1976.tb02421.xA.D. Faust, O.M. Aly, Chemistry of Water Treatment, Butterworths, Boston, MA, 1983, pp. 326–328.Martenson, C. H., Sheetz, M. P., & Graham, D. G. (1995). In Vitro Acrylamide Exposure Alters Growth Cone Morphology. Toxicology and Applied Pharmacology, 131(1), 119-129. doi:10.1006/taap.1995.1053Kaggwa, R. C., Mulalelo, C. I., Denny, P., & Okurut, T. O. (2001). The impact of alum discharges on a natural tropical wetland in uganda. Water Research, 35(3), 795-807. doi:10.1016/s0043-1354(00)00301-8Dearfield, K. L., Abernathy, C. O., Ottley, M. S., Brantner, J. H., & Hayes, P. F. (1988). Acrylamide: its metabolism, developmental and reproductive effects, genotoxicity, and carcinogenicity. Mutation Research/Reviews in Genetic Toxicology, 195(1), 45-77. doi:10.1016/0165-1110(88)90015-2McCollister, D. D., Oyen, F., & Rowe, V. K. (1964). Toxicology of acrylamide. Toxicology and Applied Pharmacology, 6(2), 172-181. doi:10.1016/0041-008x(64)90103-6BOLTO, B., & GREGORY, J. (2007). Organic polyelectrolytes in water treatment. Water Research, 41(11), 2301-2324. doi:10.1016/j.watres.2007.03.012World Health Organization, Guidelines for drinking-water quality: Incorporating first and second addenda, in: World Health Organization (Ed.) Recommendations, third ed., vol. 1, World Health Organization, Geneva, 2008, pp. 188–194.Hamilton, M. A. (1994). A Statistician’s View of the U.S. Primary Drinking Water Regulation on Coliform Contamination. Environmental Science & Technology, 28(11), 1808-1811. doi:10.1021/es00060a009J. Criddle, A review of the mammalian and aquatic toxicity of polyelectrolites, NR 2545 Medmenhan, Foundation for Water Research 1990.Hebert, A., Forestier, D., Lenes, D., Benanou, D., Jacob, S., Arfi, C., … Levi, Y. (2010). Innovative method for prioritizing emerging disinfection by-products (DBPs) in drinking water on the basis of their potential impact on public health. Water Research, 44(10), 3147-3165. doi:10.1016/j.watres.2010.02.004Gerecke, A. C., & Sedlak, D. L. (2003). Precursors ofN-Nitrosodimethylamine in Natural Waters. Environmental Science & Technology, 37(7), 1331-1336. doi:10.1021/es026070iCharrois, J. W. A., Arend, M. W., Froese, K. L., & Hrudey, S. E. (2004). DetectingN-Nitrosamines in Drinking Water at Nanogram per Liter Levels Using Ammonia Positive Chemical Ionization. Environmental Science & Technology, 38(18), 4835-4841. doi:10.1021/es049846jS.A.A. Jahn, Proper use of African natural coagulants for rural water supplies- Research in the Sudan and a guide for new projects, Deutsche Gesellschaft für Technische Zusammenarheit (GTZ), Eschborn, 1986.Dorea, C. C. (2006). Use of Moringa spp. seeds for coagulation: a review of a sustainable option. Water Science and Technology: Water Supply, 6(1), 219-227. doi:10.2166/ws.2006.027Kawamura, S. (1991). Effectiveness of Natural Polyelectrolytes in Water Treatment. Journal - American Water Works Association, 83(10), 88-91. doi:10.1002/j.1551-8833.1991.tb07236.xLee, S. H., Lee, S. O., Jang, K. L., & Lee, T. H. (1995). Microbial flocculant from Arcuadendron sp. TS-49. Biotechnology Letters, 17(1), 95-100. doi:10.1007/bf00134203Effect of synthetic and natural coagulant on lignin removal from pulp and paper wastewater. (1997). Water Science and Technology, 35(2-3). doi:10.1016/s0273-1223(96)00943-2Broekaert, W. F., Cammue, B. P. A., De Bolle, M. F. C., Thevissen, K., De Samblanx, G. W., Osborn, R. W., & Nielson, K. (1997). Antimicrobial Peptides from Plants. Critical Reviews in Plant Sciences, 16(3), 297-323. doi:10.1080/07352689709701952Jahn, S. A. A. (1988). Using Moringa Seeds as Coagulants in Developing Countries. Journal - American Water Works Association, 80(6), 43-50. doi:10.1002/j.1551-8833.1988.tb03052.xMuyibi, S. A., & Okuofu, C. A. (1995). Coagulation of low turbidity surface waters withMoringa oleiferaseeds. International Journal of Environmental Studies, 48(3-4), 263-273. doi:10.1080/00207239508710996Ndabigengesere, A., Narasiah, K. S., & Talbot, B. G. (1995). Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Water Research, 29(2), 703-710. doi:10.1016/0043-1354(94)00161-yOkuda, T., Baes, A. U., Nishijima, W., & Okada, M. (2001). Isolation and characterization of coagulant extracted from moringa oleifera seed by salt solution. Water Research, 35(2), 405-410. doi:10.1016/s0043-1354(00)00290-6Ghebremichael, K. A., Gunaratna, K. R., Henriksson, H., Brumer, H., & Dalhammar, G. (2005). A simple purification and activity assay of the coagulant protein from Moringa oleifera seed. Water Research, 39(11), 2338-2344. doi:10.1016/j.watres.2005.04.012Sánchez-Martín, J., Ghebremichael, K., & Beltrán-Heredia, J. (2010). Comparison of single-step and two-step purified coagulants from Moringa oleifera seed for turbidity and DOC removal. Bioresource Technology, 101(15), 6259-6261. doi:10.1016/j.biortech.2010.02.07

    In situ biomonitoring shows seasonal patterns and environmentally mediated gaping activity in the bivalve, Pinna nobilis

    Get PDF
    The rhythms and responses of animals to environmental factors are important issues for their adaptation to natural cycles. These rhythms assure an optimum synchrony between organisms and their environment. Bio-logging enables monitoring these activity cycles remotely. To characterize rhythms and responses of fan mussels (Pinna nobilis) to environmental factors, six individuals were monitored from April 2009 to October 2011. The study was conducted at a station in the western Mediterranean at 11 m depth in Tabarca Island Marine Reserve (Alicante, Spain). Sensors at the station monitored dissolved oxygen (mg l−1), turbidity (ntu), temperature (°C), chlorophyll a concentration (chl a) (mg m−3), current speed (cm s−1), and direction (°). One pattern of gaping activity (P1) occurred from mid-July–early August–early November, whereas another pattern (P2) occurred the rest of the time (i.e., from early November–mid-July–early August). The activity was synchronized among the fan mussels and showed autocorrelation peaks at a period of 21.9–24 h. In P1, the fan mussels opened their valves according to the position and illumination of the sun and moon. In P2, however, individuals did not track sun and moonlight, although their gaping activity was regular and synchronized. Likewise, individuals were unaffected by high-frequency (daily) variation in dissolved oxygen and (chl a). Gaping activity was directly influenced by current intensity and direction. The shift between the two patterns and the presence of similar periods of autocorrelation in the activity time series indicate that P. nobilis has an internal clock

    Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors.

    Get PDF
    Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/-) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [3H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [3H]5-HT and an elevated number of [3H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus

    Handling method alters the hedonic value of reward in laboratory mice

    Get PDF
    Mice are the most widely used model species for drug discovery and scientific research. Consequently, it is important to refine laboratory procedures and practices to ensure high standards of welfare and scientific data quality. Recent studies have identified that the standard practice of handling laboratory mice by their tails increases behaviours indicative of anxiety, which can be overcome by handling mice using a tunnel. However, despite clear negative effects on mice’s behaviour, tunnel handling has yet to be widely implemented. In this study, we provide the first evidence that tail handling also reduces mice’s responses to reward. Anhedonia is a core symptom of clinical depression, and is measured in rodents by assessing how they consume a sucrose solution: depressed mice consume less sucrose and the size of their licking bouts when drinking (their ‘lick cluster sizes’) also tend to be smaller. We found that tail handled mice showed more anhedonic responses in both measures compared to tunnel handled mice, indicative of a decreased responsiveness to reward and potentially a more depressive-like state. Our findings have significant implications for the welfare of laboratory mice as well as the design and interpretation of scientific studies, particularly those investigating or involving reward

    Three-Dimensional Microscopy Characterization of Death Receptor 5 Expression by Over-Activated Human Primary CD4+ T Cells and Apoptosis

    Get PDF
    Activation-induced cell death is a natural process that prevents tissue damages from over-activated immune cells. TNF-Related apoptosis ligand (TRAIL), a TNF family member, induces apoptosis of infected and tumor cells by binding to one of its two death receptors, DR4 or DR5. TRAIL was reported to be secreted by phytohemagglutinin (PHA)-stimulated CD4+ T cells in microvesicles
    corecore