737 research outputs found

    Environmental determinants of perch (Perca fluviatilis) growth in gravel pit lakes and the relative performance of simple versus complex ecological predictors

    Get PDF
    Growth of fish is an important contributor to individual fitness as well as fish production. Explaining and predicting growth variation across populations is thus important from fundamental and applied perspectives, which requires knowledge about the ecological factors involved in shaping growth. To that end, we estimated environment-dependent von Bertalanffy growth models for 13 gravel pit lake populations of Eurasian perch (Perca fluviatilis) from north-western Germany. To identify the main drivers of perch growth, we evaluated the performance of 16 different biotic or abiotic lake variables in explaining growth variation among lakes. In addition, we compared growth predictions from the best-performing model incorporating “complex” variables that require intensive sampling effort, with a model using only “simple”, easily measurable lake variables (e.g. shoreline development factor). The derivation of a simple model aimed at future applications in typically data-poor inland fisheries, predicting expected growth potential from easily measurable lake variables. A model combining metabolic biomass of predators, maximum depth and shoreline development factor performed best in predicting perch growth variation across gravel pits. All three parameters in this model were positively related to perch growth. The best-performing simple model consisted only of the shoreline development factor. Length-at-age predictions from both models were largely identical, highlighting the utility of shoreline development factor in approximating growth potential of perch in gravel pits similar to our study lakes. Our results can be used to inform fisheries management and restoration efforts at existing or newly excavated gravel pit lakes.Bundesamt fĂŒr Naturschutz http://dx.doi.org/10.13039/501100010415Bundesministerium fĂŒr Bildung und Forschung http://dx.doi.org/10.13039/501100002347Spanish Ministry of Economy, Industry and Competitiveness http://dx.doi.org/10.13039/501100010198Peer Reviewe

    Behavioural and fitness effects of translocation to a novel environment: Whole‐lake experiments in two aquatic top predators

    Get PDF
    Translocation into a novel environment through common fisheries management practices, such as fish stocking, provides opportunities to study behavioural and fitness impacts of translocations at realistic ecological scales. The process of stocking, as well as the unfamiliarity with novel ecological conditions and the interactions with resident fish may affect translocated individuals, leading to alterations of behaviours and causing fitness impacts. Our objectives were to investigate how aquatic top predators behaviourally establish themselves and compete with resident individuals following introduction in a novel lake environment and to investigate the resulting fitness consequences. Using high‐resolution acoustic telemetry, we conducted whole‐lake experiments and compared the activity, activity‐space size and fate of translocated and resident individuals in two model top predators, the northern pike Esox lucius (n = 160) and European catfish Silurus glanis (n = 33). Additionally, we compared the reproductive success of translocated and resident northern pike. The experiment was conducted with large (adult) individuals of different origins, resilient to predation, but subject to agonistic interactions and competition with resident fish. Over a period of several months, the translocated catfish exhibited consistently larger activity‐space sizes than resident catfish, but did not differ from residents in activity and survival. The pike from one of the two translocated origins we tested also showed elevated space‐use, and both translocated origins revealed higher mortality rates than their resident conspecifics, indicating maladjustment to their novel environment. When non‐resident pike reproduced, they overwhelmingly produced hybrid offspring with resident fish, indicating that introductions fostered gene flow of non‐native genes. Our study indicates that fish introductions result in behavioural and fitness impacts even in large‐bodied top predators that experience low levels of natural predation risk.Leibniz CommunityBesatzfisch (German Federal Ministry for Education and Research)Peer Reviewe

    Impact of pubertal timing and depression on error‐related brain activity in anxious youth

    Full text link
    Anxiety disorders are associated with enhanced error‐related negativity (ERN) across development but it remains unclear whether alterations in brain electrophysiology are linked to the timing of puberty. Pubertal timing and alterations of prefrontal and limbic development are implicated in risk for depression, but the interplay of these factors on the ERN–anxiety association has not been assessed. We examined the unique and interactive effects of pubertal timing and depression on the ERN in a sample of youth 10–19 years old with anxiety disorders (n = 30) or no history of psychopathology (n = 30). Earlier pubertal maturation was associated with an enhanced ERN. Among early, but not late maturing youth, higher depressive symptoms were associated with a reduced ERN. The magnitude of neural reactivity to errors is sensitive to anxiety, depression, and development. Early physical maturation and anxiety may heighten neural sensitivity to errors yet predict opposing effects in the context of depression.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146936/1/dev21763.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146936/2/dev21763_am.pd

    Impact of Regional Systems of Care on Disparities in Care Among Female and Black Patients Presenting With ST‐Segment–Elevation Myocardial Infarction

    Get PDF
    BACKGROUND: The American Heart Association Mission: Lifeline STEMI (ST-segment-elevation myocardial infarction) Systems Accelerator program, conducted in 16 regions across the United States to improve key care processes, resulted in more patients being treated within national guideline goals (time from first medical contact to device: <90 minutes for direct presenters to hospitals capable of performing percutaneous coronary intervention; <120 minutes for transfers). We examined whether the effort reduced reperfusion disparities in the proportions of female versus male and black versus white patients. METHODS AND RESULTS: In total, 23 809 patients (29.3% female, 82.3% white, and 10.7% black) presented with acute STEMI between July 2012 and March 2014. Change in the proportion of patients treated within guideline goals was compared between sex and race subgroups for patients presenting directly to hospitals capable of performing percutaneous coronary intervention (n=18 267) and patients requiring transfer (n=5542). The intervention was associated with an increase in the proportion of men treated within guideline goals that presented directly (58.7-62.1%, P=0.01) or were transferred (43.3-50.7%, P<0.01). An increase was also seen among white patients who presented directly (57.7-59.9%, P=0.02) or were transferred (43.9-48.8%, P<0.01). There was no change in the proportion of female or black patients treated within guideline goals, including both those presenting directly and transferred. CONCLUSION: The STEMI Systems Accelerator project was associated with an increase in the proportion of patients meeting guideline reperfusion targets for male and white patients but not for female or black patients. Efforts to organize systems of STEMI care should implement additional processes targeting barriers to timely reperfusion among female and black patients

    Positioning aquatic animals with acoustic transmitters

    Get PDF
    Geolocating aquatic animals with acoustic tags has been ongoing for decades, relying on the detection of acoustic signals at multiple receivers with known positions to calculate a 2D or 3D position, and ultimately recreate the path of an aquatic animal from detections at fixed stations.This method of underwater geolocation is evolving with new software and hardware options available to help investigators design studies and calculate positions using solvers based predominantly on time-difference-of-arrival and time-of-arrival.We provide an overview of the considerations necessary to implement positioning in aquatic acoustic telemetry studies, including how to design arrays of receivers, test performance, synchronize receiver clocks and calculate positions from the detection data. We additionally present some common positioning algorithms, including both the free open-source solvers and the 'black-box' methods provided by some manufacturers for calculating positions.This paper is the first to provide a comprehensive overview of methods and considerations for designing and implementing better positioning studies that will support users, and encourage further knowledge advances in aquatic systems

    What Is a Representative Brain? Neuroscience Meets Population Science

    Get PDF
    The last decades of neuroscience research have produced immense progress in the methods available to understand brain structure and function. Social, cognitive, clinical, affective, economic, communication, and developmental neurosciences have begun to map the relationships between neuro-psychological processes and behavioral outcomes, yielding a new understanding of human behavior and promising interventions. However, a limitation of this fast moving research is that most findings are based on small samples of convenience. Furthermore, our understanding of individual differences may be distorted by unrepresentative samples, undermining findings regarding brain–behavior mechanisms. These limitations are issues that social demographers, epidemiologists, and other population scientists have tackled, with solutions that can be applied to neuroscience. By contrast, nearly all social science disciplines, including social demography, sociology, political science, economics, communication science, and psychology, make assumptions about processes that involve the brain, but have incorporated neural measures to differing, and often limited, degrees; many still treat the brain as a black box. In this article, we describe and promote a perspective—population neuroscience—that leverages interdisciplinary expertise to (i) emphasize the importance of sampling to more clearly define the relevant populations and sampling strategies needed when using neuroscience methods to address such questions; and (ii) deepen understanding of mechanisms within population science by providing insight regarding underlying neural mechanisms. Doing so will increase our confidence in the generalizability of the findings. We provide examples to illustrate the population neuroscience approach for specific types of research questions and discuss the potential for theoretical and applied advances from this approach across areas

    Differences in Gene Expression between First and Third Trimester Human Placenta: A Microarray Study

    Get PDF
    BACKGROUND: The human placenta is a rapidly developing organ that undergoes structural and functional changes throughout the pregnancy. Our objectives were to investigate the differences in global gene expression profile, the expression of imprinted genes and the effect of smoking in first and third trimester normal human placentas. MATERIALS AND METHODS: Placental samples were collected from 21 women with uncomplicated pregnancies delivered at term and 16 healthy women undergoing termination of pregnancy at 9-12 weeks gestation. Placental gene expression profile was evaluated by Human Genome Survey Microarray v.2.0 (Applied Biosystems) and real-time polymerase chain reaction. RESULTS: Almost 25% of the genes spotted on the array (n = 7519) were differentially expressed between first and third trimester placentas. Genes regulating biological processes involved in cell proliferation, cell differentiation and angiogenesis were up-regulated in the first trimester; whereas cell surface receptor mediated signal transduction, G-protein mediated signalling, ion transport, neuronal activities and chemosensory perception were up-regulated in the third trimester. Pathway analysis showed that brain and placenta might share common developmental routes. Principal component analysis based on the expression of 17 imprinted genes showed a clear separation of first and third trimester placentas, indicating that epigenetic modifications occur throughout pregnancy. In smokers, a set of genes encoding oxidoreductases were differentially expressed in both trimesters. CONCLUSIONS: Differences in global gene expression profile between first and third trimester human placenta reflect temporal changes in placental structure and function. Epigenetic rearrangements in the human placenta seem to occur across gestation, indicating the importance of environmental influence in the developing feto-placental unit

    A Biological Model for Influenza Transmission: Pandemic Planning Implications of Asymptomatic Infection and Immunity

    Get PDF
    Background: The clinical attack rate of influenza is influenced by prior immunity and mixing patterns in the host population, and also by the proportion of infections that are asymptomatic. This complexity makes it difficult to directly estimate R0 from the attack rate, contributing to uncertainty in epidemiological models to guide pandemic planning. We have modelled multiple wave outbreaks of influenza from different populations to allow for changing immunity and asymptomatic infection and to make inferences about R0. \ud \ud Data and Methods. On the island of Tristan da Cunha (TdC), 96% of residents reported illness during an H3N2 outbreak in 1971, compared with only 25% of RAF personnel in military camps during the 1918 H1N1 pandemic. Monte Carlo Markov Chain (MCMC) methods were used to estimate model parameter distributions. \ud \ud Findings. We estimated that most islanders on TdC were non-immune (susceptible) before the first wave, and that almost all exposures of susceptible persons caused symptoms. The median R0 of 6.4 (95% credibility interval 3.7–10.7) implied that most islanders were exposed twice, although only a minority became ill in the second wave because of temporary protection following the first wave. In contrast, only 51% of RAF personnel were susceptible before the first wave, and only 38% of exposed susceptibles reported symptoms. R0 in this population was also lower [2.9 (2.3–4.3)], suggesting reduced viral transmission in a partially immune population. \ud \ud Interpretation: Our model implies that the RAF population was partially protected before the summer pandemic wave of 1918, arguably because of prior exposure to interpandemic influenza. Without such protection, each symptomatic case of influenza would transmit to between 2 and 10 new cases, with incidence initially doubling every 1–2 days. Containment of a novel virus could be more difficult than hitherto supposed
    • 

    corecore