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Abstract
Growth of fish is an important contributor to individual fitness as well as fish produc-
tion. Explaining and predicting growth variation across populations is thus important 
from fundamental and applied perspectives, which requires knowledge about the 
ecological factors involved in shaping growth. To that end, we estimated environ-
ment-dependent von Bertalanffy growth models for 13 gravel pit lake populations 
of Eurasian perch (Perca fluviatilis) from north-western Germany. To identify the main 
drivers of perch growth, we evaluated the performance of 16 different biotic or abi-
otic lake variables in explaining growth variation among lakes. In addition, we com-
pared growth predictions from the best-performing model incorporating “complex” 
variables that require intensive sampling effort, with a model using only “simple”, 
easily measurable lake variables (e.g. shoreline development factor). The derivation 
of a simple model aimed at future applications in typically data-poor inland fisher-
ies, predicting expected growth potential from easily measurable lake variables. A 
model combining metabolic biomass of predators, maximum depth and shoreline de-
velopment factor performed best in predicting perch growth variation across gravel 
pits. All three parameters in this model were positively related to perch growth. The 
best-performing simple model consisted only of the shoreline development factor. 
Length-at-age predictions from both models were largely identical, highlighting the 
utility of shoreline development factor in approximating growth potential of perch 
in gravel pits similar to our study lakes. Our results can be used to inform fisheries 
management and restoration efforts at existing or newly excavated gravel pit lakes.
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1  | INTRODUC TION

Identifying and understanding biotic and abiotic drivers of fish 
growth is of fundamental importance in ecology and is also rele-
vant to inform effective conservation and fisheries management 
(Beverton & Holt, 1957; Campana & Thorrold, 2001). In the pres-
ence of typically gape-limited predators, fast growth can reduce 
natural mortality and is thus a key fitness component in fishes 
(Werner, Gilliam, Hall, & Mittelbach, 1983). Fast growth is also 
crucial for fish production and yield in fisheries (Beverton & Holt, 
1957).

The growth of fishes is a function of consumption and me-
tabolism, two processes that are prone to biotic and abiotic in-
fluences related to thermal environment, availability of food and 
presence of predators (van Poorten & Walters, 2016). The local 
biotic and abiotic conditions vary greatly across inland lakes and 
may account for a significant proportion of variation in fish growth 
within ecoregions (Wagner et al., 2007). A good understanding of 
the relative importance of different ecological factors impacting 
consumption and metabolism is necessary to explain and predict 
variation in growth across populations. Knowledge about the en-
vironmental dependencies of growth for fishes can in turn help 
identifying potentially fast- or slow-growing populations and in-
form fisheries management actions, such as the design of harvest 
restrictions (FAO, 2012).

We examined biotic and abiotic influences on growth patterns 
of Eurasian perch (Perca fluviatilis) in artificially created gravel pit 
lakes in Germany. Gravel pits are formed by the mining of sand, 
gravel and other mineral resources; they are a dominant lake type 
in many agricultural and urbanised landscapes (Søndergaard, 
Lauridsen, Johansson, & Jeppesen, 2018; Zhao, Grenouillet, Pool, 
Tudesque, & Cucherousset, 2016) and provide important habitats 
for recreational fisheries (Meyerhoff, Klefoth, & Arlinghaus, 2019). 
Relative to natural lakes, gravel pits tend to be fairly steeply sloped, 
are often mesotrophic (Søndergaard et al., 2018) and characterised 
by limitations in the availability of structured habitat in the littoral 
(Emmrich, Schälicke, Hühn, Lewin, & Arlinghaus, 2014). Fish eco-
logical research in European gravel pit lakes is scarce (Matern et 
al., 2019; Søndergaard et al., 2018; Zhao, et al., 2016). Specifically, 
there is a lack of research on the environmental determinants of 
fish growth, including perch growth as a prime target of many in-
land fisheries in lakes (Heermann et al., 2013; Jacobsen, Berg, & 
Skov, 2004).

Perch fulfil key ecological roles in lakes, as they are often the 
dominant piscivore of the pelagic zone under mesotrophic condi-
tions (Mehner, Diekmann, Brämick, & Lemcke, 2005; Persson, Diehl, 
Johansson, Andersson, & Hamrin, 1991) and can exert a large im-
pact on lake food webs through predation (Persson et al., 2003). 
Perch typically undergo two ontogenetic diet shifts as they grow in 
length (Amundsen et al., 2003). In the larval stage, perch feed on 
zooplankton in the pelagic zone, before they move to the littoral 
zone within the first year of life, where they mainly feed on zoo-
plankton and later on benthic invertebrates (Amundsen et al., 2003). 

After a second ontogenetic niche shift, perch become piscivorous 
(Amundsen et al., 2003; Hjelm, Persson, & Christensen, 2000). The 
occurrence and timing of ontogenetic niche shifts depend on a num-
ber of environmental conditions, habitat availability, and degree of 
intraspecific and interspecific food competition (Hjelm et al., 2000; 
Persson & Greenberg, 1990). This ontogenetic complexity and its 
plasticity imply that growth of perch can be affected by a broad 
range of factors related to both abiotic and biotic drivers includ-
ing density-dependent population feedback (Ylikarjula, Heino, & 
Dieckmann, 1999).

Biotic drivers are known to affect growth of perch via food avail-
ability, competition and predation (Holmgren & Appelberg, 2001; 
Persson & Greenberg, 1990; Persson et al., 2003). Increasing nutrient 
availability alters the amount, species composition and size struc-
ture of the prey base available to higher trophic levels, supporting 
food webs from the bottom-up (Ask et al., 2009). Lake eutrophica-
tion benefits growth and biomass of perch up to a maximum under 
mesotrophic conditions, whereupon further eutrophication usually 
has negative effects on perch production (Hartmann & Nümann, 
1977; Persson et al., 1991). For a given nutrient level, the degree of 
interspecific competition limits the amount of food available to the 
individual perch, with implications for growth. In particular, higher 
densities of zooplanktivorous cyprinids, such as roach (Rutilus ruti-
lus), can force juvenile perch to shift to macroinvertebrate feeding 
(too) early in life. This in turn can increase intercohort competition 
with older conspecifics and ultimately reduce individual growth rates 
(Hjelm et al., 2000; Persson & Greenberg, 1990). In the piscivorous 
stage, however, perch growth may profit from increased biomass of 
zooplanktivores serving as prey (Hjelm et al., 2000). Relatedly, the 
relevance of intraspecific competition in shaping perch growth has 
been documented for both juvenile (Byström & Garcia-Berthou, 
1999) and adult stages (Arranz et al., 2015).

Accelerated growth has been observed for perch that switch diet 
to piscivory early in life, possibly even as age-0 fish (e.g. Urbatzka, 
Beeck, Van der Velde, & Borcherding, 2008). Yet, increasing preda-
tion pressure may negatively affect feeding activity and risk-tak-
ing of inferior, usually small-bodied juvenile perch (Magnhagen & 
Borcherding, 2008). These changes might depress growth of juve-
niles (Ahrens, Walters, & Christensen, 2012) with knock-on effects 
on adult growth if the switch to piscivory is delayed. Alternatively, 
greater predator biomasses might evolutionarily select for fast 
growth in juveniles, to outgrow gape-limited predators more rap-
idly (Biro, Post, & Abrahams, 2005). The presence of large cannibals 
in perch can also thin out juveniles, thereby releasing them from 
food competition and stunting, facilitating growth of the survivors 
(Persson et al., 2003). Thus, the top-down impacts of predation on 
growth of perch could both be negative or positive, depending on 
local conditions, justifying further research.

In addition to competition for food and predation, habitat struc-
ture also affects growth of perch. In particular, the density and quality 
of physical habitat such as macrophytes and dead wood are known 
to correlate with the amount and diversity of zoobenthic organisms, 
which are an important food source for young perch (e.g. Watkins, 
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Shireman, & Haller, 1983). Beside food provision, physical habitat can 
indirectly facilitate growth, as perch are known to be particularly ef-
ficient feeders in physical structures compared to cyprinid competi-
tors, while sufficient refuge from predation is provided (Diehl, 1988; 
Hargeby, Blom, Blindow, & Andersson, 2005; Persson & Eklöv, 1995).

Among the abiotic drivers of growth, water temperature is one 
of the most broadly recognised factors that affects the develop-
ment of all ectothermic animals via physiological and metabolic 
effects (Fry, 1971; Magnuson, Crowder, & Medvick, 1979) and 
through lower trophic level responses shaping prey availability 
and abundance (Yvon-Durocher, Jones, Trimmer, Woodward, & 
Montoya, 2010). A time series analysis from Lake Windermere 
(U.K.) has found that growth of Eurasian perch can be positively 
related to summer water temperature (Le Cren, 1958), yet more 
recent meta-analyses predict shrinking mean sizes of perch with 
further increases in temperature due to climate change (van Dorst 
et al., 2019; Ohlberger, Edeline, Vøllestad, Stenseth, & Claessen, 
2011). In addition, water transparency, which is coupled to chang-
ing nutrient loads and temperature, has implications for feeding 
efficiency and resource utilisation of visual predators, such as 
perch, thereby affecting growth (Bartels, Hirsch, Svanbäck, & 
Eklöv, 2012; Diehl, 1988; van Dorst et al., 2019; Horppila et al., 
2010; Jacobsen, Berg, Baktoft, Nilsson, & Skov, 2014).

Among the morphological factors, surface area, lake depth and 
shoreline length constitute indicators of resource and habitat het-
erogeneity and are positively correlated with the species richness 
of zooplankton (Dodson, 1992), macrophytes (Thomaz, Souza, & 
Bini, 2003), macroinvertebrates (Heino, 2000) and fish (Barbour & 
Brown, 1974; Eckmann, 1995). A high availability of diverse food 
sources and physical habitats may be of particular relevance for the 
“ontogenetic omnivore” perch that regularly moves among pelagic 
and littoral habitats and diets depending on local food competition 
(Persson, Byström, & Wahlström, 2000).

The objective of this study was to examine the biotic and abiotic 
correlates of perch growth specific to small gravel pit lakes with 
water areas below 20 ha. We computed nested (individuals within 
populations) von Bertalanffy growth models for 13 perch popula-
tions across Lower Saxony (Germany) and compared the perfor-
mance of 16 different in-lake variables to explain the observed 
growth variation across lakes. To improve the application poten-
tial of the growth models to typically data-poor inland fisheries 
management, we specifically explored the relative performance of 
easily measurable predictors (e.g. lake depth or shoreline develop-
ment factor). We asked whether the models with simple variables 
performed similarly in predicting growth variation of perch among 
lakes compared to more complex ecological predictors.

F I G U R E  1   Location of surveyed gravel pit lakes (N = 13) in Lower Saxony, Germany (modified from Matern et al., 2019)
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Our work addressed the following research questions:

1. Which biotic and abiotic environmental factors serve best in 
predicting growth variation of perch across gravel pit lakes in 
north-western Germany?

2. How well does a growth model consisting of just easily estimable 
environmental variables perform relative to models that addition-
ally use complex ecological variables?

2  | MATERIAL S AND METHODS

2.1 | Study lakes and collection of size-at-age data

Our fish sampling complied with fisheries law in Lower Saxony and 
included permission for electrofishing (# 34.4–65434-IV). Fish 

communities and environmental descriptors of 13 gravel pit lakes 
(<20 ha) located in the lowlands of Lower Saxony, north-western 
Germany, were surveyed in autumn 2016 (Figure 1; Tables 1 
and 2). Fish community surveys used benthic multi-mesh gillnets 
and daytime electrofishing, both conducted in autumn when ep-
ilimnion temperature was above 15°C. We used an adapted CEN 
(2015) standard for benthic multi-mesh gillnets. As the CEN (2015) 
standard provides depth-stratified gillnet numbers only for lakes 
of 20 ha or larger, and because all our study lakes were smaller 
than this threshold, we adjusted the gillnet number to the lake size 
to achieve a similar gillnet pressure in all gravel pit lakes. The larg-
est lake (Meitzer See, 19.6 ha) was the designated reference lake, 
where 16 benthic gillnets were set as the CEN (2015) standard 
recommends for 20 ha lakes. The gillnet pressure of Meitzer See 
was calculated as the ratio of gillnets to lake size. Afterwards, this 
quotient was multiplied by the lake size of each (smaller) gravel 

TA B L E  1   Overview of sampled lake descriptors

Lake Lake area (ha) Mean depth (m) Max. depth (m) SDF
Mean Chlorophyll a  
(µg/l)

Mean Secchi 
depth (m)

Chodhemster Kolk 3.26 5.55 10.1 1.10 3.99 ± 1.86 1.8 ± 0.96

Collrunge 4.71 3.95 8.61 1.09 5.86 ± 1.84 2.7 ± 0.7

Donner Kiesgrube 0.97 3.32 5.16 1.19 10.86 ± 4.31 1.53 ± 0.55

Kiesteich Brelingen 9.36 3.21 8.71 1.85 5.93 ± 2.41 1.43 ± 0.25

Kolshorner Teich 4.75 6.38 16.1 1.09 5.81 ± 3.56 3.23 ± 1.42

Meitzer See 19.6 11.9 23.5 1.31 2.2 ± 0.32 4.5 ± 0.7

Pfütze 11.4 4.26 7.35 1.72 3.64 ± 1.54 3.23 ± 1.14

Plockhorst 15.1 3.18 8.19 1.6 25.31 ± 5.38 0.9 ± 0.36

Saalsdorf 9.03 5.33 9.21 1.28 13.59 ± 4.38 1.77 ± 0.84

Stedorfer Baggersee 2.12 1.67 2.81 1.2 10.93 ± 1.08 1.63 ± 0.55

Steinwedeler Teich 11 5.29 9.06 1.72 6.45 ± 3.67 2.7 ± 1.04

Weidekampsee 3.23 2.25 4.29 1.57 3.2 ± 0.54 3.93 ± 0.42

Wiesedermeer 3.27 3.73 9.23 1.67 6.93 ± 1.73 2.1 ± 0.89

 Mean TP (µg/L)
Macrophyte 
coverage (%) CWS density (N/m2) Pelagic area (%)

Mean GDD 
(°C*day)

Chodhemster Kolk 15.9 ± 3.5 22.9 0.01 73.6 1,531

Collrunge 14.9 ± 1.1 45.4 0.035 67.3 1,807

Donner Kiesgrube 47.3 ± 19.6 11.3 0.087 63.8 1,818

Kiesteich Brelingen 34.3 ± 25.8 4.21 0.031 51.1 1,671

Kolshorner Teich 13 ± 4.6 19 0.082 79.6 1,954

Meitzer See 7 ± 3.6 5.22 0.061 91.2 1,616

Pfütze 12.3 ± 0.6 62.9 0.049 67.2 1,913

Plockhorst 45.3 ± 10 19.9 0.08 47.9 1,841

Saalsdorf 22.7 ± 7.5 22.4 0.071 84.4 1,664

Stedorfer Baggersee 31.3 ± 7.6 59.8 0.024 0 1,700

Steinwedeler Teich 11.3 ± 4.2 16.7 0.029 82.5 1,820

Weidekampsee 11.3 ± 3.2 72.7 0.026 41.7 1,837

Wiesedermeer 19 ± 1 17.8 0.005 57.1 1,707

Note: Mean ± Standard Deviation is given for variables with repeated measurements.
Abbreviations: CWS, coarse woody structure; GDD, growing degree-days; TP, total phosphorous; SDF, Shoreline development factor.
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pit lake to define the number of gillnets to be set in each lake. 
The total number of benthic gillnets was then distributed accord-
ing to the extension of the depth strata (0–2.9, 3–5.9, 6–11.9 and 
12–19.9 m) as recommended in the CEN (2015) standard to guar-
antee an equal sampling effort per lake size. Gill nets were set 
following a depth-stratified random sample design (see CEN, 2015 
and Matern et al., 2019 for details). Multi-mesh gillnets of 40 m 
length and 1.5 m height, with mesh sizes of 5, 6.25, 8, 10, 12.5, 
15.5, 19.5, 24, 29, 35, 43, 55, 70, 90, 110 and 135 mm (panel length 
of each mesh size was 2.5 m) were deployed once per lake for ap-
proximately 12 hr overnight in the benthic zone. After the nets 
were retrieved, littoral electrofishing was conducted along the en-
tire shoreline of each lake from a boat using an 8 kW fuel-driven 
generator (EFKO Fischfanggeräte GmbH Leutkirch “FEG 8000″) 
and an anode diameter of 40 cm. The purpose of the electrofish-
ing was to capture the smallest size classes representatively, which 
are often strictly littoral-bound and might thus not be fully vulner-
able to the gill nets. We pooled all captured perch from both gears 
for ageing, as the combined use of two complementary gears re-
duces bias in ageing studies (Wilson et al., 2015). The total length 
of each fish (perch and other species) captured was measured to 
the nearest millimetre, and a subsample of perch was lethally sam-
pled for ageing.

2.2 | Ageing

A maximum of ten individual perch per 20 mm length-class were sam-
pled for the growth analysis. Opercular bones were chosen for age 
and growth determination, as these structures allow more reliable 
age estimation compared to other hard structures of perch (Baker & 
McComish, 1998; Le Cren, 1947). Opercula were removed from the 

previously killed fish and prepared for reading following the procedure 
suggested by Le Cren (1947). One operculum was prepared and ana-
lysed for each individual and read by the first author. In addition, for all 
perch > 250 mm and within each lake for at least the five largest indi-
viduals, both opercula were prepared. In these fish, both opercula were 
analysed and radius/annuli measurements averaged. The rationale was 
to analyse growth of the (presumably) oldest individuals as accurately 
as possible, because these fish are usually less frequent in a population, 
but have a substantial impact when estimating the population growth 
function (Quist, Pegg, & DeVries, 2012).

To gather age and growth information, distances of annuli from 
the focus (located in the innermost part of the structure) and the 
total operculum radius were measured along a consistent axis aligned 
through the centermost part of the structure (Le Cren, 1947). The mea-
surements were taken using a digital microscope and image analysis 
software (Quick Scope vision measurement device; QSPAK software; 
www.mitut oyo.co.jp/eng). Age-0 fish and individuals where the oper-
cula showed no discernible annuli were excluded from the analysis. 
Moreover, the growth increment of the year-of-capture was omitted 
from growth analyses because this year was not completed.

The opercula size-at-age data did not exhibit the Rosa Lee phe-
nomenon after an initial inspection following Duncan (1980). Thus, 
we used all operculum radius-at-age data of each fish, properly ac-
counting for multiple measurements of individual fish in the statisti-
cal model fitting (see below).

2.3 | Biotic variables

Indicators of lake trophic status were measured as chlorophyll a 
and total phosphorous (TP) as described by Matern et al. (2019) 
for the same study lakes. Secchi-depth measurements represent 

TA B L E  2   Overview of sampled community descriptors

Lake
Length2 Perch 
(mm2/m2 net)

Length2 Predators 
(mm2/m2 net)

Length2 Intraspecific 
(mm2/m2 net)

Length2 Interspecific 
(mm2/m2 net)

Piscivory (MTL at 
age−2 and −3)

Chodhemster Kolk 2,746 1,768 1,377 508 3.51 ± 0.11

Collrunge 7,527 3,198 4,328 733 3.20 ± 0.26

Donner Kiesgrube 8,582 4,890 3,692 576 3.98 ± 0.17

Kiesteich Brelingen 11,348 8,000 4,292 3,829 3.96 ± 0.12

Kolshorner Teich 3,015 3,137 526 298 2.97 ± 0.39

Meitzer See 1,743 1,579 225 307 3.70 ± 0.13

Pfütze 6,218 3,057 3,161 0 3.71 ± 0.21

Plockhorst 6,631 7,080 2,685 1,057 3.50 ± 0.23

Saalsdorf 4,113 1,539 3,339 670 4.62 ± 0.18

Stedorfer Baggersee 7,717 3,273 4,444 358 3.46 ± 0.1

Steinwedeler Teich 7,463 6,465 1,038 534 2.63 ± 0.25

Weidekampsee 5,931 5,664 349 575 2.91 ± 0.44

Wiesedermeer 2,626 3,746 610 2,864 3.70 ± 0.14

Note: Standard deviation is given for Piscivory.
Abbreviation: MTL, Mean trophic level.

http://www.mitutoyo.co.jp/eng
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both trophic status and water transparency. As these measures are 
known to fluctuate across seasons, we averaged observations from 
spring, summer, and autumn 2017 to obtain measures of mean chlo-
rophyll a and mean total phosphorous. Secchi-depth data addition-
ally included observations from spring, summer, and autumn 2018.

The variables representing fish community were calculated as 
metabolic biomass because it has been suggested that raw catch per 
unit effort measures do not appropriately account for the dispropor-
tionally higher consumption by large individuals (Post, Parkinson, & 
Johnston, 1999; Walters & Post, 1993). Metabolic biomass was cal-
culated as the sum of squared fish lengths per unit fishing effort of 
m2 gillnet area (hereafter abbreviated as “length2”) using a stratified 
mean across depth strata while taking the depth strata extension 
of each lake into account (following CEN, 2015). Intraspecific com-
petition measures comprised sum of length2 per effort estimates 
of small perch < 120 mm total length to represent juvenile intra-
specific competition (“Length2 Intraspecific”) and length2 of perch 
of all sizes to represent juvenile and adult intraspecific competition 
(“Length2 Perch”). The metabolic biomass of nonperch, nonpredatory 
species < 120 mm represented interspecific juvenile competition 
(“Length2 Interspecific”), because literature suggests that interspe-
cific competition is most strongly affecting growth at this life stage 
(Persson & Greenberg, 1990). Typical competitor species such as roach 
are mostly zooplanktivorous at sizes below the chosen threshold of 
120 mm (Hjelm et al., 2003). Predation pressure (“Length2 Predators”) 
was represented by the length2 estimate of potential predatory spe-
cies (pike Esox lucius > 100 mm, zander Sander lucioperca > 100 mm 
and perch > 120 mm). These length thresholds were chosen to repre-
sent the onset of piscivory in the respective species following the me-
ta-analysis by Mittelbach & Persson (1998). The contribution of each 
species to the pooled variables is given in Suppporting Information S1. 
All fish biomass measures were derived using only gillnet catch data. 
Multi-mesh gill nets are a standard approach to assess lake biomass in 
Europe (CEN, 2015) and thus enable comparability with future studies. 
As an indicator of how early perch switch to piscivorous feeding in any 
of our study lakes, we calculated a piscivory index as the mean trophic 
level of age-2 and age-3 perch against a zooplankton baseline. This 
measure was derived from a previously conducted lake-specific stable 
isotope analysis of the same individuals that were also sampled for age 
and growth (Trudeau, 2018).

2.4 | Abiotic variables

Mean lake depth, maximum lake depth and the extension of pelagic 
zone (area with water depth > 3 m) were derived from bathymet-
ric maps quantified for all lakes using echosounding (see Matern 
et al., 2019 for details). Geographical waypoints were taken along 
the shoreline by using open-source maps (https ://www.geopl aner.
de; last visit: 04.11.2019), and lake area and shoreline length were 
calculated using the software R 3.5.2 (R Core Team, 2018). A shore-
line development factor was calculated as the ratio of a lake's shore-
line length to the circumference of a circle of equal area to the lake 

(Osgood, 2005). A higher shoreline development factor indexes a 
larger, more irregular shoreline length for a given lake size.

Macrophyte coverage (submergent and emergent) was estimated 
from snorkel surveys conducted between late June and late August 
2016 on equidistant transects, using the protocol of Schaumburg et 
al. (2014) and then transformed into per cent coverage per lake as 
described in Nikolaus et al. (2019). Coarse woody structures (CWS) 
in the littoral were surveyed between mid-June and mid-July 2017 
along equidistant transects of 10 m length and 4 m width perpendic-
ular from the shore (or to a maximum of 3 m water depth). The num-
ber of coarse woody items found in these transects was summed 
over all transects and divided by the area that was covered by the 
transects to obtain a wood density index (further details in Nikolaus 
et al., 2019). Dead wood was categorised as coarse woody item if 
one of three criteria was true: bulk diameter > 5 cm, length > 50 cm, 
or at least secondary branching (as described in DeBoom & Wahl, 
2013) was present.

As a measure of the temperature experienced by the perch, 
we calculated the cumulative growing degree-days (Neuheimer 
& Taggart, 2007) as derived from temperature logger data (Onset 
“HOBO Pendant Temp” dataloggers). Two loggers were fixed at 
0.5 m water depth in each lake, usually on opposite shore sites of the 
lake. These loggers measured water temperature every two hours. 
First, daily degree-days were calculated as the integral of mean daily 
temperature above a base threshold of T0 = 10°C (Chezik, Lester, 
& Venturelli, 2014). A T0 of 10°C was chosen because it has been 
used in previous growth analyses in perch (Mooij, Lammens, & Van 
Densen, 1994). The daily values were then summed per year to yield 
the cumulative growing degree-days. Temperature data from August 
2016–July 2018 were analysed, averaging repeated observations of 
daily degree-days across years.

2.5 | Modelling growth

Growth models were based on operculum radii-at-age instead of fish 
length-at-age data to reduce possible bias introduced through back-
calculation of total length, where a joint intercept is derived from a 
regression of operculum radius on fish total length (Francis, 1990). 
This intercept is then applied to all fish, which reduces among-in-
dividual variance in backcalculated length-at-age in dimensions of 
the fish length. This issue is avoided by working in operculum length 
units. We fitted an integrated von Bertalanffy growth function to 
operculum radius-at-age data, as this model has been recognised to 
fit observed data of Perca spp. well (Chen, Jackson, & Harvey, 1992). 
We used pooled data from both gears (gillnetting and electrofishing) 
across all study lakes in a Bayesian hierarchical mixed-effects model. 
Length L at a given age t was predicted by.

where Lt,l,i is the predicted operculum radius of fish i in lake l at age 
t, L

∞l,i is the theoretical maximum operculum radius of fish i in lake l, 

Lt,l,i=L
∞l,i

(

1−e−Kl,i(tl,i−t0l,i)
)

,

https://www.geoplaner.de
https://www.geoplaner.de
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Kl,i is the Brody growth coefficient (expressing the rate at which L
∞

 is 
approached as 1/year, which is also a proxy for juvenile growth rate) 
of fish i in lake l, tl,i is the estimated age of fish i in lake l, and t0l,i is the 
theoretical age at length zero of fish i in lake l.

The data structuring followed a three-level hierarchical ap-
proach. Repeated measurements of operculum radius-at-age (in mm) 
were nested within individual fish, individual fish were nested within 
lakes, and lake-specific von Bertalanffy parameters L

∞l and Kl were 
associated with a unique set of environmental characteristics as de-
scribed below.

Though opercula radii constituted the response variables of 
our environmental models, we illustrate final predictions of size-
at-age at the body length scale to facilitate interpretation (e.g. 
Figure 2). To that end, we regressed opercula size at capture on 
observed fish's total length at capture, which followed a linear re-
lationship (y = 21.8 + 15.6x; R2 = 0.981). Parameter estimates of 
this linear function were used to transform operculum lengths to 
body length.

2.6 | Explaining growth variation along 
environmental gradients

To identify key mechanisms shaping perch growth, lake-specific L
∞l 

and Kl estimates were modelled as a function of different linear com-
binations of environmental variables. Following the arguments of 
van Poorten and Walters (2016), environmental variables relate to 
different mechanisms of metabolism and consumption, thereby dif-
ferentially affecting the parameters of the von Bertalanffy growth 
model. Asymptotic length L

∞
 was assumed to be a ratio of anabolism 

q (approximately proportional to consumption) and standard meta-
bolic rate M per body length L 

(

qL

ML

)

 (van Poorten & Walters, 2016). 
This suggests that external factors that affect consumption alone, 
either directly through foraging rate or efficiency, or indirectly 
through food availability, will impact L

∞
 (van Poorten & Walters, 

2016). By contrast, mechanisms affecting consumption and metabo-
lism simultaneously will cancel out. Consequently, we decided to 
model covariates affecting consumption alone on L

∞l, while environ-
mental covariates affecting both consumption and metabolism were 
modelled on Kl in line with arguments by van Poorten and Walters 
(2016).

Variables modelled on L
∞l included measures of lake productivity, 

such as chlorophyll a and total phosphorous concentration through 
bottom-up effects on prey availability, and Secchi depth through 
additional effects on foraging efficiency. Habitat structural vari-
ables such as the proportion of pelagic zone, shoreline development 
factor, macrophyte and dead wood density, may be related to mac-
roinvertebrate abundance and diversity (e.g. Watkins et al., 1983), 
thereby impacting consumption. Competition measures, that is, 
metabolic biomass of intra- and interspecific competitors (<120 mm), 
and perch of all sizes, were modelled on L

∞l as they ultimately affect 
the per capita consumption. Water temperature, measured as the 
annual growing degree-days (GDDs), affects consumption through 

activity and energy demands, and metabolism through enzyme ac-
tivity (Fry, 1971). Hence, GDD was modelled using Kl as response 
variable. Mean depth, maximum depth and lake area were also mod-
elled on Ki, because other studies showed a correlation between 
these lake morphometry measures and water temperature (e.g. Arai, 
1981) and may in addition affect nutrient availability through mixing. 
Piscivory was assumed to influence consumption through the con-
sumed prey type, and metabolism through increased activity when 
chasing mobile prey fish. Finally, predator biomass was modelled on 
Kl, as high predation pressure may induce reduced risk-taking, thus 
decreasing activity and food uptake of prey individuals (Magnhagen 
& Borcherding, 2008).

To assure positive values for the growth coefficient Kl, all covari-
ates affecting consumption and metabolism were implemented in 
the following linear form using a log-link function (following Varkey 
et al., 2018):

where X(CM)j is an observed covariate affecting consumption and me-
tabolism (CM), and αj represents the estimated variable-specific effect 
size. The same applied to covariates that were assumed to affect con-
sumption exclusively and were thus modelled on L

∞l

with X(C)j being a covariate that affects consumption (C), and βj 
being the corresponding effect size. All covariates were z-trans-
formed (mean-subtracted and divided by standard deviation) prior 
to application of the model.

Concerning the stochastic components of the hierarchical model, 
up to three levels were considered. For the lowest level, size-at-age 
observations were assumed to be normally distributed around the 
expected value (Lt,l,i) with a common (within and across fish) standard 
deviation (σobs). At the between-fish level of the same lake, the three 
parameters of the von Bertalanffy model were assumed to be gam-
ma-distributed with a lake-specific mean and standard deviation. 
Note that these gamma distributions were parameterised by a rate 
and a scale, the latter being the product of the expected mean and 
the rate. The lake-specific values of the von Bertalanffy parameters 
were in turn assumed to be gamma-distributed with a mean given 
by a lake-specific expected value and with a between-lake standard 
deviation. For L

∞
 and K, the lake-specific expected values were given 

by the linear combination of environmental variables described 
above. Conversely, the expected value for the theoretical age at 
length zero, t0, was assumed to be environmentally independent, but 
lake-specific (values are reported in Suppporting Information S2).

A principal component analysis was conducted for lake variables 
affecting L

∞
 and K, respectively, to recognise potentially correlated 

variables (Suppporting Information S3). Axes with Eigenvalues > 1 
were interpreted (Kaiser–Guttman criterion), and variables with high 
loadings on the same axis (>0.4) were not included in the same model 
to avoid multicollinearity issues (Chatfield & Collins, 1980).

Kl=Ke
∑

�jX(CM)j ,

L
∞l=L

∞
e
∑

�jX(C)j ,
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We computed multiple nested models using forward variable 
selection (Heinze, Wallisch, & Dunkler, 2018) to ultimately find a 
combination of predictor variables that performed best in predicting 
growth of perch. Starting from a base model without environmental 
covariates, each of the considered covariates was modelled in a uni-
variate manner on the respective response variable (L

∞l or Kl) it was 
previously assigned to (Table 3, models #1–#16). Only significant 
factors were combined on the next level of complexity (model #17). 
In a Bayesian context, any variable is considered significant, if the 
95% credibility interval of its posterior distribution does not include 
zero (Royle et al., 2013). When no more variables were significant, 
nonsignificant ones that performed better in a single-variable model 
than the base model (see model evaluation strategy below) were 
included. This step was repeated as long as inclusion of further vari-
ables improved model goodness. As suggested by Quince, Shuter, 
Abrams, and Lester (2008), the deviance information criterion (DIC) 

was used to assess and compare all tested models (Tables 3 and 4). 
This measure evaluates the quality of a model based on its explan-
atory power, while rewarding lower numbers of effective parame-
ters (= “law of parsimony”). A smaller value of DIC thus corresponds 
to a more parsimonious model and increased prediction power. 
Consequently, the model with the lowest DIC was retained as the 
most suitable model to describe perch growth in gravel pits based 
on environmental covariates (Tables 3 and 4).

After having identified the best available model to describe perch 
growth, the set of covariates was reduced to only those that were 
assumed to be easily obtainable by local fisheries managers (Table 4). 
The previously described variable selection process was then re-
peated in the same way to find the “best simple” model, similar to 
the overall best available growth model. Variables considered “easily 
measurable” were Secchi depth, mean and maximum depth, propor-
tion of pelagic zone (derivable from echosounder surveys), lake area, 

F I G U R E  2   Results of the basic growth model without environmental covariates. (a) Predicted lake-specific von Bertalanffy 
growth functions with observed data points at the body–length scale. Lake numbers to interpret the x-scale of (b) and (c) are given in 
parentheses. (b) Boxplots of lake-specific Bayesian posterior probability distributions of L

∞
. (c) Boxplots of lake-specific posterior probability 

distributions of K
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and shoreline development factor (both determinable with open-ac-
cess geographical programs). These are all abiotic variables, as none of 
the available community variables were considered easily obtainable.

The parameters of the models described above were estimated 
using a Bayesian approach. The posterior probability distribution 
for each model was inferred using Markov chain Monte Carlo 
(MCMC) simulation, implemented in JAGS 4.3.0 (Plummer, 2003). 
The model, data and MCMC settings were implemented with an ad 
hoc R routine (R 3.5.2; R Core Team, 2018) that used the “R2Jags” 
package (Su & Yajima, 2012). Priors and other modelling details are 
fully described in the R routine, which is provided as Supporting 
Information S4 and S5. Posterior probability distributions were es-
timated from 100,000 iterations, a burn-in period of 50,000 itera-
tions, a thinning factor of 10, and three Markov chains. Convergence 

was then evaluated through visual examination of trace plots of 
MCMC chains. Moreover, when the estimated R.hat value (a sta-
tistic that compares within- and between chain variability) of any 
covariate in a model exceeded 1.1, additional sets of 50,000 iter-
ations each were run until the R.hat values were < 1.1 (Gelman & 
Shirley, 2011). In doing so, former iterations were burnt-in. This step 
ensured comparability of goodness measures across models.

3  | RESULTS

In total, N = 704 perch contributed to the cross-lake growth analysis. 
Total length of the observed fish ranged from 48 to 434 mm. The 
estimated age of the oldest individual in the sample was 10 years. 

TA B L E  3   Results of the model selection process considering all available covariates

Model L
∞l Kl DIC ΔDIC

Base L
∞l Kl 4,180.5 158.1

#1 L
∞l Kl e Lake area 4,176.9 154.5

#2 L
∞l Kl e Mean depth 4,163.7 141.3

#3 L
∞l Kl e Max. depth 4,116.2 93.8

#4 L
∞l Kl e Growing degree-days 4,159.2 136.8

#5 L
∞l Kl e Piscivory 4,095 72.6

#6 L
∞l Kl e Length2 Predators* 4,057.9 35.5

#7 L
∞l e Proportion Pelagic Kl 4,182.6 160.2

#8 L
∞l e Shoreline development factor* Kl 4,059.2 36.8

#9 L
∞l e Total phosphorous Kl 4,202.1 179.7

#10 L
∞l e Secchi depth Kl 4,288.2 265.8

#11 L
∞l e Chlorophyll a Kl 4,166.6 144.2

#12 L
∞l e Coarse woody structure Kl 4,096.4 74

#13 L
∞l e Macrophyte coverage Kl 4,099.3 76.9

#14 L
∞l e Length2 Interspecific Kl 4,080.9 58.5

#15 L
∞l e Length2 Intraspecific Kl 4,093.7 71.3

#16 L
∞l e Length2 Perch Kl 4,075.9 53.5

#17 L
∞l e Shoreline development factor Kl e Length2 Predators 4,035.2 12.8

#18 L
∞l e Shoreline development factor Kl e Length2 Predators + Lake area 4,142.4 120

#19 L
∞l e Shoreline development factor Kl e Length2 Predators* + Mean depth 4,057.2 34.8

#20 L
∞l e Shoreline development factor Kl e Length2 Predators* + Max. depth 4,022.4 0

#21 L
∞l e Shoreline development factor Kl e Length2 Predators + Growing degree-days 4,164.8 142.4

#22 L
∞l e Shoreline development factor Kl e Length2 Predators* + Piscivory 4,081.5 59.1

#23 L
∞l e Shoreline development factor + Chlorophyll a Kl e Length2 Predators 4,162 139.6

#24 L
∞l e Shoreline development factor + Coarse woody structure Kl e Length2 Predators 4,243.4 221

#25 L
∞l e Shoreline development factor + Macrophyte coverage Kl e Length2 Predators 4,070.6 48.2

#26 L
∞l e Shoreline development factor + Length2 Interspecific Kl e Length2 Predators 4,133.3 110.9

#27 L
∞l e Shoreline development factor + Length2 Intraspecific Kl e Length2 Predators 4,212.1 189.7

#28 L
∞l e Shoreline development factor* + Length2 Perch Kl e Length2 Predators 4,166.3 143.9

Note: Given are the implemented variables in any respective model, and the Deviance Information Criterion (DIC) as the ranking criterion. Best 
performing model's DIC is highlighted in bold (#20). ΔDIC corresponds to the numerical difference of any model's DIC to that of the best performing 
model. Bold letters and a * indicate a significant covariate. Models with more covariates had increased DIC estimates, and are reported in 
Suppporting Information S6.
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Of the sampled perch, 66% were captured by gillnets, whereas 34% 
were caught by electrofishing.

3.1 | Growth models without covariates

The von Bertalanffy growth curves for all lakes on the basis of 
length-at-age data without any covariates are shown in Figure 2a. 
Medians of posterior probability distributions of L

∞l, derived from 
this base model ranged from 393 mm (Stedorfer Baggersee) to 
457 mm (Plockhorst; Figure 2b). Median estimates of Kl ranged from 
0.095/year (Stedorfer Baggersee and Chodhemster Kolk) to 0.146/
year (Kiesteich Brelingen; Figure 2c). The base model was assigned 
a DIC of 4,180.5, which was 158.1 points greater than the DIC from 
the best model that included explanatory covariates (Table 3). The 
base model was thus not the best-fitting model.

3.2 | Growth models including biotic and 
abiotic variables

On a univariate level, the effects of predator metabolic biomass 
(modelled on Kl) and shoreline development factor (modelled on L

∞l) 
were found to be significant and positive (Table 3). Among all models 
examined in our forward selection approach, a model consisting of 

predator metabolic biomass, maximum depth (modelled on Kl) and 
shoreline development factor (modelled on L

∞l) received the lowest 
DIC estimate (Table 3, model #20). The positive median estimates 

TA B L E  4   Results of the model selection process using only 
variables that were considered obtainable by local fisheries 
managers

Model L
∞l Kl DIC ΔDIC

Base L
∞l Kl 4,180.5 121.3

#1 L
∞l Kl e Lake 

area
4,176.9 117.7

#2 L
∞l Kl e Mean 

depth
4,163.7 104.5

#3 L
∞l Kl e Max. 

depth
4,116.2 57

#7 L
∞l e Proportion 

Pelagic
Kl 4,182.6 123.4

#8 L
∞l e Shoreline 

development factor*
Kl 4,059.2 0

#10 L
∞l e Secchi depth Kl 4,288.2 229

#38 L
∞l e Shoreline 

development factor
Kl e Lake 

area
4,138.6 79.4

#39 L
∞l e Shoreline 

development factor
Kl e Mean 

depth
4,090.1 30.9

#40 L
∞l e Shoreline 

development factor*
Kl e Max. 

depth
4,067.6 8.4

Note: Given are the implemented variables in any respective model, and 
the Deviance Information Criterion (DIC) as the ranking criterion. Best 
performing model's DIC is highlighted in bold (#8). ΔDIC corresponds 
to the numerical difference of any model's DIC to that of the best 
performing model. Bold letters and a * indicate a significant covariate.

F I G U R E  3   Effect sizes of (a) shoreline development factor, (b) 
predator metabolic biomass and (c) maximum depth, as predicted 
from the best-performing model to explain growth variation (#20). 
Red lines represent a predicted growth curve when the respective 
covariate is set to its upper quantile value (97.5%). At the same 
time, other covariates in the model are fixed at their mean across 
lakes. Blue lines represent a growth curve predicted from the lower 
quantile of the respective covariate (2.5%). Dashed lines indicate 
the credibility interval of the projected growth curve
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of the posterior distributions indicate a positive effect direction for 
each covariate in this model, but the confidence intervals of maxi-
mum depth and shoreline development factor overlapped zero, 
suggesting weak effects (Suppporting Information S6). Accordingly, 
the effect size of predictors, as indicated by the distance between a 
projected growth curve from the lower and upper quantile of the pa-
rameter, was larger for predator biomass than for shoreline develop-
ment factor and maximum depth (Figure 3). Neither intraspecific nor 
interspecific competition (as indexed by metabolic biomasses) sig-
nificantly improved model performance, and the only biotic variable 
exerting strong effects was a top-down measure—predator biomass.

A results table of the model selection process using only easily 
obtainable environmental variables is given in Table 4. In the sin-
gle-covariate models (#1–#13), shoreline development factor (model 
#8) received the lowest DIC estimate and was the only significant 
variable, with a positive effect on L

∞l. On the next level of com-
plexity (two predictors; models #38–40), all models had larger DIC 
values compared to model #8. We thus retained model #8 as the 
best-performing simple model, implying that K was not predicted by 
any environmental covariate in this model. The univariate effect size 
of shoreline development factor on growth curves is visualised in 
Figure 4. Extensive results of the model selection process including 
Bayesian credibility intervals of parameter estimates are provided as 
Supporting Information S6 and S7.

When comparing growth predictions from the best com-
plex model #20 with predictions from the best simple model #8, 
it became apparent that there were only minor and biologically 
negligible differences between the two growth projections. The 
credibility interval of length-at-age predictions of model #8 was 
slightly larger for some lakes, especially at younger fish ages (e.g. 
Figure 5b). Comparison plots of the two models for selected lakes 
are shown in Figure 5 and predicted lengths at some representative 

ages are given in Table 5. As the lake-specific models represented 
the average growth trajectory of a population, growth models fit-
ted the observed length-at-age data poorer in lakes where growth 
of perch showed strong variation among extremely poor and very 
fast-growing individuals. Lakes with substantial within-population 
variation in growth consequently had larger uncertainties in von 
Bertalanffy parameter estimates (e.g. Lake “Plockhorst”; Figures 
2b and 5c).

4  | DISCUSSION

Growth of perch in gravel pits of north-western Germany was 
best predicted from a model combining the metabolic biomass of 
predators, maximum depth (both describing growth coefficient K) 
and shoreline development factor (describing maximum length L

∞
). 

The top-down force of predation was found to induce the greatest 
variation in growth within our set of predictors, with higher preda-
tor biomasses promoting increases in the Brody growth coefficient 
K as a proxy of juvenile growth rate. This result is in line with pre-
vious studies finding a positive link between predation pressure 
and juvenile growth rates (or K) of perch (Heibo & Magnhagen, 
2005; Persson et al., 2003). The inclusion of maximum depth as a 
predictor in the best model moreover substantiates the previously 
described role of lake morphometry for perch performance (Kahl 
& Radke, 2006; Jeppesen, Peder Jensen, SØndergaard, Lauridsen, 
& Landkildehus, 2000; Mehner et al., 2005), although the effect of 
lake depth on perch growth was smaller than the effect of preda-
tor biomass (Figure 3b,c). Additionally, the positive association of 
higher shoreline development factors with increased theoretical 
maximum lengths (L

∞
) suggests the importance of shoreline habi-

tat diversity and availability for growth prospects of the “ontoge-
netic omnivore” perch. Throughout different life stages, perch 
are reliant on a functioning littoral shoreline serving both as for-
age habitat and as refuge from predation (Diehl, 1988; Persson & 
Eklöv, 1995). A more pronounced shoreline development factor 
typically correlates with a greater diversity of habitats and prey 
types, which according to our study benefits perch growth in 
gravel pits.

The shoreline development factor, describing L
∞

, produced the 
best-performing growth prediction when only easily obtainable 
variables were considered. This model delivered similar lake-spe-
cific growth projections as those derived from the top-ranked 
complex model with a difficult to enumerate measure of meta-
bolic biomass of predators. The simple model we identify might 
thus constitute a promising application when information about 
lake-specific fish communities is lacking (as is often the case in 
the management of small, artificial lakes), but fisheries managers 
are interested in prescreening lakes that promise to offer good 
(or poor) growth for perch. Information on the growth potential 
of gravel pit lakes may also inform decisions about introductions 
when gravel pits are formed and fish communities are about to be 
established.

F I G U R E  4   Effect size of shoreline development factor on 
growth predictions as predicted from the best model of “simple” 
variables (#8). Red lines represent a predicted growth curve when 
the covariate is set to its upper quantile value (97.5%). Blue lines 
represent a growth curve predicted from the lower quantile of the 
covariate (2.5%). Dashed lines indicate the credibility interval of the 
projected growth curve
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4.1 | Best prediction of perch growth from 
"complex" variables

There are several mechanisms that may underlie the observed posi-
tive link between metabolic biomasses of predators and juvenile 
growth rate K, and its strong contribution to between-lake varia-
tion in growth. Similar to our work, Heibo and Magnhagen (2005) 
found a positive association of relative predator density and perch 
growth rates and concluded that this was likely a result of thinning 
effects through predation leading to elevated prey availability for 
the surviving animals. Similar evidence has been presented else-
where (Persson, Andersson, Wahlström, & Eklöv, 1996; Persson et 
al., 2003). However, in our study we did not detect a relation of com-
petitive (intra- and interspecific) indices with perch growth. Similarly, 
there was no evidence for stunting in our study populations as the 
final length of fish was rather high across all lakes. Thus, a possible 
thinning effect of high predation biomass seems unlikely as an expla-
nation for our study findings.

A further reason could relate to growth-selective predation. 
High predation risk has been found to select for faster growing 
individuals who are able to grow more rapidly into a size refuge, 

where they are safe from gape-limited predators (Biro et al., 
2005). As we failed to find evidence for the Rosa–Lee phenome-
non (which would suggest slower-growing fish living longer) in our 
data, we suggest that high predator biomass may have fostered 
growth through selective predation of more slowly-growing indi-
viduals. More specifically, as large perch were the main contribu-
tor to our measure of predator metabolic biomass (Suppporting 
Information S1), we propose that the correlation between pred-
ator biomass and juvenile growth rates K largely stemmed from 
cannibalistic interactions. Our study thus supports earlier findings 
that intercohort cannibalism controls perch growth rates within 
populations (Persson et al., 2003). However, our results suggest 
that this process may involve top-down control through selective 
predation of slower-growing individuals rather than being exclu-
sively driven by cannibalistic thinning of stunted juvenile popula-
tions by cannibals.

A related explanation could be that populations with low 
predator biomass might also be more intensively fished (Lewin, 
Arlinghaus, & Mehner, 2006). Except for one lake, all the study 
lakes are managed for recreational fisheries, yet the actual ex-
ploitation rate of perch is unknown. It is, however, safe to assume 
that in particular larger perch are regularly targeted and removed 

F I G U R E  5   Comparison plots of von Bertalanffy growth curves predicted by “best complex” model #20 (blue lines) versus growth curves 
predicted by “best simple” model #8 (red lines) for four exemplary lakes. Dashed lines indicate the Bayesian credibility interval of the 
respective growth model. Grey lines in the background indicate the body length-at-age trajectories of individual fish
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for consumption across our study lakes. Fisheries selectively cap-
ture bold and fast-growing individuals (Biro & Post, 2008; Klefoth, 
Skov, Kuparinen, & Arlinghaus, 2017), which in turn would mean 
that more intensively fished populations could host slower-grow-
ing, less vulnerable individuals. These effects stemming from fish-
eries selection would also contribute to a positive correlation of 
predatory biomass and growth rate, assuming that fishing pressure 
caused different biomasses of predators.

Finally, it has been shown experimentally that predation may 
elicit behavioural and habitat-use responses of perch. Juvenile 
perch have been found to reduce risk-taking when exposed to a 
higher size-specific predation pressure (Magnhagen & Borcherding, 
2008). Reduced risk-taking may imply less time spent foraging, 
possibly leading to slower growth (Ahrens et al., 2012). However, 
although Persson and Eklöv (1995) also showed that higher pre-
dation risk forces juvenile perch into refuge habitats (e.g., physical 
structures), this habitat shift accelerated the shift from planktivo-
rous to benthivorous feeding, and ultimately growth rates were 
independent of predator presence and refuge use. This might be 
facilitated by the fact that perch are able to feed efficiently also in 
refuge habitats (Diehl, 1988; Persson & Eklöv, 1995). Collectively, 
our results suggest that the benefits of predation (probably through 
selective predation of slowly-growing perch) outweigh the potential 
growth-impairing effects of high predator biomass.

In combination with predator biomass, maximum depth im-
proved model performance, indicating that morphometry may be 
relevant for perch growth in gravel pits as well, with a tendency 
for increased lake depths to be associated with faster growth rates 
K. Associations of lake depth with the performance of perch in 
lake ecosystems are broadly recognised in the literature. For ex-
ample, it is common that perch are a dominant species in deeper, 
mesotrophic lakes (Jeppesen et al., 2000; Mehner et al., 2005). 
Lake depth may shape opportunities of niche separation between 

perch and competing cyprinids and thereby shapes food competi-
tion independent of densities (Kahl & Radke, 2006). An increased 
lake depth can thus facilitate widening of the initially described 
“juvenile competitive bottleneck” between perch and cyprinids, 
allowing better growth opportunities for perch (Kahl & Radke, 
2006; Persson & Greenberg, 1990).

The positive relation of maximum length L
∞

 with the shore-
line development factor univariately and in the best-performing 
model emphasises the involvement of habitat-related factors in 
shaping perch growth. In general, longer shoreline lengths relative 
to a lake's surface area may provide a higher quantity and diversity 
of habitats and resources (Barbour & Brown, 1974). Availability of 
diverse littoral habitats serving as refuge and foraging habitats 
might reduce bottlenecks across different niches and may thus be 
of particular importance for an ontogenetically complex species 
such as perch. Persson (1983) reported that habitat homogene-
ity in lakes (as is more likely the case in lakes with low shoreline 
extension) hinders niche segregation among age-classes of perch, 
thus increasing intraspecific competition and reducing size diver-
sity in perch populations. Importantly, an isolated relationship of 
growth potential with the densities of specific physical habitat 
features (i.e., macrophyte coverage or dead wood density) was not 
supported by our data. We thus suppose that the overall diver-
sity of shoreline habitats and resources, rather than the density of 
one physical habitat type, may be more important in determining 
growth of perch in gravel pits.

4.2 | Best prediction of perch growth from 
"simple" variables

The shoreline development factor (affecting L
∞

) turned out 
to constitute the best-performing “simple” variable to explain 

TA B L E  5   Lake-specific L
∞

, lake-specific K (as medians of the posterior probability distributions), and body length-at-age (in mm) at three 
exemplary ages (age-1, age-3, age-5) as predicted from the best overall model including “complex” variables (#20) versus the “best simple” 
model (#8), shown for four sample lakes

Lake Model Age−1 (mm) Age−3 (mm) Age−5 (mm) L
∞l (mm) Kl

Weidekampsee #20 85.1 143.7 192.5 428.7 0.094

#8 85 144 192.9 437.2 0.091

Δ −0.01 +0.03 +0.04 +8.5 −0.003

Kiesteich Brelingen #20 79.1 168.2 235.5 442.4 0.141

#8 79.6 169.2 237.5 454.8 0.136

Δ +0.5 +1 +2 +12.4 −0.005

Plockhorst #20 85.6 173.1 239.8 448.1 0.137

#8 85.5 171.8 238 459.9 0.131

Δ −0.01 −1.3 −1.8 +11.8 −0.006

Wiesedermeer #20 73.2 147.1 206.4 441.6 0.111

#8 73.2 147.5 206.9 447.1 0.110

Δ +0 +0.4 +0.5 +5.5 −0.001

Mean difference ± SD  0.13 ± 0.25 0.68 ± 0.57 1.09 ± 0.96 9.5 ± 3.2 0.004 ± 0.002
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growth variation in perch. When comparing growth curves for 
our study lakes as predicted from the best available model with 
curves from the best “simple” model, both delivered similar pre-
dictions with biologically negligible deviations (Figure 5, Table 5). 
In a few lakes, model predictions of the simple model showed 
wider uncertainties at low ages compared to the best “complex” 
model, likely due to the lack of a useful predictor for juvenile 
growth rate K (Figure 5b). Combining results of the two presented 
models, we conclude that biotic interactions (through predation) 
are relevant for explaining perch growth in gravel pits, but if no 
information on fish community is available, our simple model 
using only shoreline development has utility for approximations 
of expected growth. However, it remains to be seen whether the 
findings of our simple model apply beyond lakes that are ecologi-
cally similar to our study lakes. Moreover, the similarities in pre-
dictions of the two presented models have to be seen against the 
background that variation in estimated L

∞
 of our study lakes was 

rather low (Figure 2b). Our models would therefore profit from 
validation in other gravel pit lakes. Code for the complex- and 
simple-variable model for application to new lakes is provided 
as Supporting Information S4 and S5.

4.3 | Limitations

There are a few limitations to this study that need to be stressed. 
One has to be careful with generalisations of the results beyond 
the environmental gradients and geographical region on which our 
analysis was based. Mainly, this constraint applies to covariates 
related to trophic status, with the majority of lakes in our work 
being mesotrophic. However, nutrient-scarcity seems to be com-
mon particularly in young gravel pit lakes (Søndergaard et al., 2018). 
Similarly, while temperature did not relate to perch growth in our 
lakes located within a geographically narrow study region, it is well 
known that temperature affects perch growth in lakes from a larger 
geographical range (e.g. Arranz et al., 2015; van Dorst et al., 2019). 
Importantly, it should be noted that growth was calculated back in 
time from 2015 (after the uncompleted sampling year 2016 was ex-
cluded), but lake and community variables were only available for 
2016 and subsequent years. We used repeated measurements of 
lake variables where possible to represent average conditions of a 
lake as best as possible. This study thus assumes temporal stability 
of environmental conditions in the study lakes, but there is no pos-
sibility in the scope of our analysis to verify this assumption. A final 
limitation relates to the absence of information about the sex of 
the individuals we sampled, but sex-specific dimorphic growth has 
been documented for perch (Mooij, Van Rooij, & Wijnhoven, 1999). 
Either sexual size dimorphism or bimodal growth through early pis-
civorous individuals (Urbatzka et al., 2008) could be explanations for 
the large between-fish variability in observed length-at-age data of 
some lakes (e.g. Figure 5c), but unlikely biases our results, because 
representation of the different sexes by gear should be equal among 
lakes.

5  | CONCLUSION

Among the environmental variables examined in this study, the best 
model to explain cross-lake variation of perch growth in gravel pits 
consisted of the metabolic biomass of predators, maximum depth 
(both positively related to K) and shoreline development factor 
(positively related to L

∞
). The large effect size of the relationship be-

tween predator biomass and juvenile growth rates provides support 
for the strong role of predation and cannibalism in shaping perch 
growth. Lakes that offer good growth potential for perch should thus 
be carefully managed for controlling fishing mortality of adult and 
predatory perch if the aim is to maintain fast growth and large-sized 
fish in the stock (Johnston, Arlinghaus, & Dieckmann, 2013). Our 
results additionally emphasise the importance of certain morpho-
metric properties in determining growth of perch in gravel pits, in 
particular lake depth and shoreline complexity. Extensive shorelines, 
which typically scale with habitat and resource heterogeneity, seem 
to be particularly beneficial for the growth potential of species with 
a complex ontogeny and food niche differentiation such as perch.

When detailed information on a lake's fish community is lack-
ing, our work highlights the utility of the shoreline development 
factor for growth prediction, yielding similar results as models with 
“complex” variables. Local fisheries managers can apply our models 
to identify lakes likely hosting fast- or slow-growing perch stocks. 
This information can in turn be used to inform fisheries management 
decisions in newly created gravel pit lakes (e.g. where to introduce 
perch) and inform habitat-related restoration efforts (e.g. how to de-
sign shorelines to foster perch growth).
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