6 research outputs found

    A diet enriched in linoleic acid compromises the cryotolerance of embryos from superovulated beef heifers

    No full text
    Dietary rumen-protected fat rich in linoleic acid may affect the superovulatory response and embryo yield; however, its effects on in vivo embryo cryotolerance are unknown in zebu cattle. The present study evaluated the production and cryotolerance after freezing or vitrification of embryos from Nelore heifers supplemented with rumen-protected polyunsaturated fatty acids (PUFA). Forty heifers kept in pasture were randomly distributed into two groups according to the type of feed supplement (F, supplement with rumen-protected PUFA, predominantly linoleic; C, control fat-free supplement with additional corn). Supplements were formulated to be isocaloric and isonitrogenous. Each heifer underwent both treatments in a crossover design with 70 days between replicates. After 50 days feeding, heifers were superovulated. Embryos were evaluated morphologically and vitrified or frozen. After thawing or warming, embryo development was evaluated in vitro. There was no difference between the F and C groups (P > 0.10) in terms of embryo production. Regardless of the cryopreservation method used, Group C embryos had a greater hatching rate after 72 h in vitro culture than Group F embryos (44.3 +/- 4.2% (n = 148) vs 30.9 +/- 4.0% (n = 137), respectively; P = 0.04). Moreover, vitrified and frozen embryos had similar hatching rates (P > 0.10). In conclusion, dietary rumen-protected PUFA rich in linoleic acid did not improve embryo production and compromised the cryotolerance of conventionally frozen or vitrified embryos from Nelore heifers.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    A diet enriched in linoleic acid compromises the cryotolerance of embryos from superovulated beef heifers

    No full text
    Dietary rumen-protected fat rich in linoleic acid may affect the superovulatory response and embryo yield; however, its effects on in vivo embryo cryotolerance are unknown in zebu cattle. The present study evaluated the production and cryotolerance after freezing or vitrification of embryos from Nelore heifers supplemented with rumen-protected polyunsaturated fatty acids (PUFA). Forty heifers kept in pasture were randomly distributed into two groups according to the type of feed supplement (F, supplement with rumen-protected PUFA, predominantly linoleic; C, control fat-free supplement with additional corn). Supplements were formulated to be isocaloric and isonitrogenous. Each heifer underwent both treatments in a crossover design with 70 days between replicates. After 50 days feeding, heifers were superovulated. Embryos were evaluated morphologically and vitrified or frozen. After thawing or warming, embryo development was evaluated in vitro. There was no difference between the F and C groups (P > 0.10) in terms of embryo production. Regardless of the cryopreservation method used, Group C embryos had a greater hatching rate after 72 h in vitro culture than Group F embryos (44.3 +/- 4.2% (n = 148) vs 30.9 +/- 4.0% (n = 137), respectively; P = 0.04). Moreover, vitrified and frozen embryos had similar hatching rates (P > 0.10). In conclusion, dietary rumen-protected PUFA rich in linoleic acid did not improve embryo production and compromised the cryotolerance of conventionally frozen or vitrified embryos from Nelore heifers.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Morphology, sex ratio and gene expression of Day 14 in vivo and in vitro bovine embryos

    No full text
    The present study was designed to compare Day 14 bovine embryos that were produced entirely in vitro using the post-hatching development (PHD) system with in vivo-derived embryos without or with transient PHD culture from Day 7 to Day 14. Embryos on Day 14 were used for sex determination and gene expression analysis of PLAC8, KRT8, CD9, SLC2A1, SLC2A3, PGK1, HSF1, MNSOD, HSP70 and IFNT using real-time quantitative (q) polymerase chain reaction (PCR). First, Day 7 in vivo-and in vitro-produced embryos were subjected to the PHD system. A higher rate of survival was observed for in vitro embryos on Day 14. Comparing Day 14 embryos produced completely in vivo or completely in vitro revealed that the mean size of the former group was greater than that of the latter (10.29±1.83 vs 2.68±0.33mm, respectively). Expression of the HSP70 and SLC2A1 genes was down-and upregulated, respectively, in the in vitro embryos. The present study shows that in vitro embryos cultured in the PHD system are smaller than in vivo embryos and that of the 10 genes analysed, only two were differentially expressed between the two groups. These findings indicate that, owing to the poor survival rate, the PHD system is not reliable for evaluation of in vitro embryo quality. © 2013 CSIRO

    Single embryo and oocyte lipid fingerprinting by mass spectrometry[S]

    No full text
    Methods used for lipid analysis in embryos and oocytes usually involve selective lipid extraction from a pool of many samples followed by chemical manipulation, separation and characterization of individual components by chromatographic techniques. Herein we report direct analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of single and intact embryos or oocytes from various species. Biological samples were simply moisturized with the matrix solution and characteristic lipid (represented by phosphatidylcholines, sphingomyelins and triacylglycerols) profiles were obtained via MALDI-MS. As representative examples, human, bovine, sheep and fish oocytes, as well as bovine and insect embryos were analyzed. MALDI-MS is shown to be capable of providing characteristic lipid profiles of gametes and embryos and also to respond to modifications due to developmental stages and in vitro culture conditions of bovine embryos. Investigation in developmental biology of the biological roles of structural and reserve lipids in embryos and oocytes should therefore benefit from these rapid MALDI-MS profiles from single and intact species
    corecore