25 research outputs found
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2â4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genesâincluding reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)âin critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity
The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)
Genetic mechanisms of critical illness in COVID-19.
Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, PÂ =Â 1.65Â ĂÂ 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, PÂ =Â 2.3Â ĂÂ 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, PÂ =Â 3.98Â ĂÂ Â 10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, PÂ =Â 4.99Â ĂÂ 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genesâincluding reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)âin critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats
In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Developmentâs (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security
RNA Binding Domain of Jamestown Canyon Virus S Segment RNAsâż
Jamestown Canyon virus (JCV) is a member of the Bunyaviridae family, Orthobunyavirus genus, California serogroup. Replication and, ultimately, assembly and packaging rely on the process of encapsidation. Therefore, the ability of viral RNAs (vRNAs) (genomic and antigenomic) to interact with the nucleocapsid protein (N protein) and the location of this binding domain on the RNAs are of interest. The questions to be addressed are the following. Where is the binding domain located on both the vRNA and cRNA strands, is this RNA bound when double or single stranded, and does this identified region have the ability to transform the binding potential of nonviral RNA? Full-length viral and complementary S segment RNA, as well as 3âČ deletion mutants of both vRNA and cRNA, nonviral RNA, and hybrid viral/nonviral RNA, were analyzed for their ability to interact with bacterially expressed JCV N protein. RNA-nucleocapsid interactions were examined by UV cross-linking, filter binding assays, and the generation of hybrid RNA to help define the area responsible for RNA-protein binding. The assays identified the region responsible for binding to the nucleocapsid as being contained within the 5âČ half of both the genomic and antigenomic RNAs. This region, if placed within nonviral RNA, is capable of altering the binding potential of nonviral RNA to levels seen with wild-type vRNAs
KarriÀrvÀgledning pÄ estetiska programmet - En kvalitativ studie i hur elever pÄ estetiska programmet rustas för det eftergymnasiala studie- och yrkeslivet
Syftet med vÄrt examensarbete Àr att undersöka hur och med vilka verktyg vÄrt urval av vÀgledare och lÀrare arbetar med att rusta elever pÄ estetiska programmet för framtida studie- och yrkesliv, i förhÄllande till elevernas karriÀrmÄl/drömmar. KarriÀr-mÄl/drömmar som kan rikta sig mot den, enligt Arbetsförmedlingens yrkesprognos, svÄretablerade arbetsmarknaden inom kulturbranschen.
Vi har genom en kvalitativ metod intervjuat fyra studie- och yrkesvÀgledare samt tvÄ lÀrare pÄ gymnasieskolans estetiska program. Vi har dÀrefter analyserat resultatet genom relevanta begrepp tagna frÄn kapitlet tidigare forskning samt Social cognitive career theory och begreppen upplevd sjÀlvförmÄga (self-efficacy), personliga mÄl (personal goals), och förvÀntade utfall (outcome expectation. Vidare har vi analyserar resultatet utifrÄn Sociodynamic Counselling: a practical approach to meaning making och begreppen verktyg, att konstruera sin egen framtid (future buildning), empowerment och att konstruera tillsammans (joint action). Vi anvÀnder Àven begreppen utvidga (pushing up), begrÀnsa (cooling out) samt institutionell aktör i syfte att analysera resultatet av vÄr empiri.
VÄrt resultat visar pÄ att majoriteten av vÄra respondenter har ett uppmuntrande förhÄllningssÀtt mot eleverna och deras karriÀrmÄl/drömmar att arbeta inom kultur-branschen. Det samverkas dock inte kring arbetet med att rusta eleverna för vÀgarna vidare efter gymnasiet men vÀgledare och lÀrare kompletterar varandra omedvetet genom att vÀgledare rustar dem inför eftergymnasiala studier och lÀrare inför ett kommande arbetsliv. Sammanfattningsvis har vi genom analysen kommit fram till att vi ser att det kan vara en balansgÄng för vÀgledare och lÀrare att vara uppmuntrande mot elevernas val av framtida karriÀr och samtidigt fÄ dem att drömma realistiskt. Detta utan att uppfattas som institutionella aktörer som begrÀnsar vad eleverna ser som möjligt att uppnÄ utifrÄn vad professionerna sjÀlva ser som förnuftigt
RVFV-6 does not prevent virus from binding to cells.
<p>RVFV-MP12 (A) or EboZ-eGFP (B) was incubated with 50 ”M RVFV-6 prior to the addition to a confluent monolayer of Vero E6 cells. After a 1 h adsorption, cells were rinsed with PBS, and RNA was harvested using TRIzol. Real time RT-PCR was conducted in triplicate to quantify the relative amount of viral RNA bound to cells, and results are combined from duplicate experiments. NTC is the no template control, PC (positive control) is RNA purified from either RVFV-MP12 or EboZ-eGFP. Untreated virus was mock treated without peptide. Error shown is the standard deviation of the mean.</p
Stem-based peptides inhibit both RVFV and VSV.
<p>Peptides were screened for inhibition of the pseudotyped reporter viruses RVF-VSV-luc (A and C) and VSV-luc (B and D). Virus was incubated with peptide RVFV-6, -7, -8, -9, or -10 (A, B) or serial dilutions of RVFV-6, RVFV-10, or the scrambled peptides RVFV-6sc or RVFV-10sc (C, D) prior to infecting a monolayer of Vero E6 cells. Luciferase activity (RLU) was measured approximately 18 h later. Percent inhibition was calculated based on the virus-only controls. Error shown is the standard deviation of the mean. Data are representative of at least 2 experiments.</p
Peptide amino acid sequences analogous to the domain and location within RVFV Gc.
<p>Peptide amino acid sequences analogous to the domain and location within RVFV Gc.</p