113 research outputs found

    A Preliminary Analysis for Understanding Variations in Mountain Springs’ Water Availability under Climate Change in Aosta Valley

    Get PDF
    The availability of freshwater resources in alpine mountain areas has been affected by the impacts of climate change on groundwater storage mechanisms. A web of complex interactions characterizes climate systems, and several potential effects of climate change in such areas remain largely unknown. Therefore, examining how groundwater storage mechanisms are changing in response to climate-driven agents is becoming increasingly crucial. To comprehend the existing relationship between changes in weather conditions and water availability in the Aosta Valley region (Northwestern Italy) and how their trends have changed over the last decade, a 7-year discharge series of different Aosta Valley springs (Promise, Alpe Perrot, Promiod, Cheserod) and precipitation data of the related meteorological stations (Aymaville-Viayes, La Thuile-Villaret, Champdepraz, Sant Vincent) were analyzed. The extent of the correlations between springs discharge measurements and hydrometeorological data was investigated. Besides, precipitation and flow rate trend analyses using the Mann–Kendall and Sen’s slope trend detection tests were performed. The Aymaville-Viayes, La Thuile-Villaret, Champdepraz, and Sant Vincent meteorological stations revealed an overall decreasing trend in annual rainfall (mm), with a slight increase in intensity (mm/day) as a result of the reduction in rainfall events (number of rainy days). Nonetheless, based on the analysis of flow rate data relating to the associated springs, Alpe Perrot, Cheserod, and Promise show an overall increasing trend of discharge over time. Although the Cheserod and Promise springs were not found to be highly correlated with rainfall, their aquifers appear to positively respond to the modified climate conditions, increasing the amount of groundwater stored. The moderate correlation values of these two springs can be a consequence of several factors such as aquifer features, distance from the weather station, and solid precipitation amounts that supply water in the following hydrogeological year. Being able to continuously monitor the effects induced by changed climatic conditions on water reserves through simplified analysis approaches such as those presented in this paper is increasingly necessary. Moreover, implementing future studies through in-depth analyses of soil infiltration, groundwater recharge and storage mechanisms are required to predict the mountain aquifers’ behavior in changing climatic conditions

    Meiotic drive does not cause condition-dependent reduction of the sexual ornament in stalk-eyed flies

    Get PDF
    Meiotic drive systems are associated with low frequency chromosomal inversions. These are expected to accumulate deleterious mutations due to reduced recombination and low effective population size. We test this prediction using the “sex‐ratio” (SR) meiotic drive system of the Malaysian stalk‐eyed fly Teleopsis dalmanni. SR is associated with a large inversion (or inversions) on the X chromosome. In particular, we study eyespan in males carrying the SR chromosome, as this trait is a highly exaggerated, sexually dimorphic trait, known to have heightened condition‐dependent expression. Larvae were raised in low and high larval food stress environments. SR males showed reduced eyespan under the low and high stress treatments but there was no evidence of a condition‐dependent decrease in eyespan under high stress. Similar but more complex patterns were observed for female eyespan, with evidence of additivity under low stress and heterosis under high stress. These results do not support the hypothesis that reduced sexual ornament size in meiotic drive males is due to a condition‐dependent response to the putative increase in mutation load. Instead, reduced eyespan likely reflects compensatory resource allocation to different traits in response to drive‐mediated destruction of sperm

    Does meiotic drive alter male mate preference?

    Get PDF
    Male mate preferences have been demonstrated across a range of species, including the Malaysian stalk-eyed fly, Teleopsis dalmanni. This species is subject to sex-ratio (SR), an X-linked male meiotic driver, which causes the dysfunction of Y-sperm and the production of all-female broods. While there has been work considering female avoidance of meiotic drive males, the mating decisions of drive-bearing males have not been considered previously. Drive males may be less able to bear the cost of choice as SR is associated with a low-frequency inversion that causes reduced organismal fitness. Drive males may also experience weaker selection for preference maintenance if they are avoided by females. Using binary choice trials, across two experiments, we confirmed male preference for large (fecund) females but found no evidence that the strength of male preference differs between drive and standard males. We showed that large eyespan males displayed strong preference for large females, whereas small eyespan males showed no preference. Taken together, these results suggest that, even though meiotic drive is associated with lower genetic quality, it does not directly interfere with male mate preference among available females. However, as drive males tend to have smaller eyespan (albeit only ~5% on average), this will to a minor extent weaken their strength of preference

    Does meiotic drive alter male mate preference?

    Get PDF
    Male mate preferences have been demonstrated across a range of species, including the Malaysian stalk-eyed fly, Teleopsis dalmanni. This species is subject to sex-ratio (SR), an X-linked male meiotic driver, which causes the dysfunction of Y-sperm and the production of all-female broods. While there has been work considering female avoidance of meiotic drive males, the mating decisions of drive-bearing males have not been considered previously. Drive males may be less able to bear the cost of choice as SR is associated with a low-frequency inversion that causes reduced organismal fitness. Drive males may also experience weaker selection for preference maintenance if they are avoided by females. Using binary choice trials, across two experiments, we confirmed male preference for large (fecund) females but found no evidence that the strength of male preference differs between drive and standard males. We showed that large eyespan males displayed strong preference for large females, whereas small eyespan males showed no preference. Taken together, these results suggest that, even though meiotic drive is associated with lower genetic quality, it does not directly interfere with male mate preference among available females. However, as drive males tend to have smaller eyespan (albeit only ~5% on average), this will to a minor extent weaken their strength of preference

    Human wild-type and D76N ÎČ_{2}-microglobulin variants are significant proteotoxic and metabolic stressors for transgenic C. elegans

    Get PDF
    ÎČ2-microglobulin (ÎČ2-m) is a plasma protein derived from physiological shedding of the class I major histocompatibility complex (MHCI), causing human systemic amyloidosis either due to persistently high concentrations of the wild-type (WT) protein in hemodialyzed patients, or in presence of mutations, such as D76N ÎČ2-m, which favor protein deposition in the adulthood, despite normal plasma levels. Here we describe a new transgenic Caenorhabditis elegans (C. elegans) strain expressing human WT ÎČ2-m at high concentrations, mimicking the condition that underlies dialysis-related amyloidosis (DRA) and we compare it to a previously established strain expressing the highly amyloidogenic D76N ÎČ2-m at lower concentrations. Both strains exhibit behavioral defects, the severity of which correlates with ÎČ2-m levels rather than with the presence of mutations, being more pronounced in WT ÎČ2-m worms. ÎČ2-m expression also has a deep impact on the nematodes' proteomic and metabolic profiles. Most significantly affected processes include protein degradation and stress response, amino acids metabolism, and bioenergetics. Molecular alterations are more pronounced in worms expressing WT ÎČ2-m at high concentration compared to D76N ÎČ2-m worms. Altogether, these data show that ÎČ2-m is a proteotoxic protein in vivo also in its wild-type form, and that concentration plays a key role in modulating pathogenicity. Our transgenic nematodes recapitulate the distinctive features subtending DRA compared to hereditary ÎČ2-m amyloidosis (high levels of non-mutated ÎČ2-m vs. normal levels of variant ÎČ2-m) and provide important clues on the molecular bases of these human diseases

    Influence of Uranium on Bacterial Communities: A Comparison of Natural Uranium-Rich Soils with Controls

    Get PDF
    This study investigated the influence of uranium on the indigenous bacterial community structure in natural soils with high uranium content. Radioactive soil samples exhibiting 0.26% - 25.5% U in mass were analyzed and compared with nearby control soils containing trace uranium. EXAFS and XRD analyses of soils revealed the presence of U(VI) and uranium-phosphate mineral phases, identified as sabugalite and meta-autunite. A comparative analysis of bacterial community fingerprints using denaturing gradient gel electrophoresis (DGGE) revealed the presence of a complex population in both control and uranium-rich samples. However, bacterial communities inhabiting uraniferous soils exhibited specific fingerprints that were remarkably stable over time, in contrast to populations from nearby control samples. Representatives of Acidobacteria, Proteobacteria, and seven others phyla were detected in DGGE bands specific to uraniferous samples. In particular, sequences related to iron-reducing bacteria such as Geobacter and Geothrix were identified concomitantly with iron-oxidizing species such as Gallionella and Sideroxydans. All together, our results demonstrate that uranium exerts a permanent high pressure on soil bacterial communities and suggest the existence of a uranium redox cycle mediated by bacteria in the soil

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC

    Recurrent SARS-CoV-2 mutations in immunodeficient patients

    Get PDF
    Long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in immunodeficient patients are an important source of variation for the virus but are understudied. Many case studies have been published which describe one or a small number of long-term infected individuals but no study has combined these sequences into a cohesive dataset. This work aims to rectify this and study the genomics of this patient group through a combination of literature searches as well as identifying new case series directly from the COVID-19 Genomics UK (COG-UK) dataset. The spike gene receptor-binding domain and N-terminal domain (NTD) were identified as mutation hotspots. Numerous mutations associated with variants of concern were observed to emerge recurrently. Additionally a mutation in the envelope gene, T30I was determined to be the second most frequent recurrently occurring mutation arising in persistent infections. A high proportion of recurrent mutations in immunodeficient individuals are associated with ACE2 affinity, immune escape, or viral packaging optimisation.There is an apparent selective pressure for mutations that aid cell–cell transmission within the host or persistence which are often different from mutations that aid inter-host transmission, although the fact that multiple recurrent de novo mutations are considered defining for variants of concern strongly indicates that this potential source of novel variants should not be discounted. © The Author(s) 2022. Published by Oxford University Press

    Genomic reconstruction of the SARS-CoV-2 epidemic in England.

    Get PDF
    The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021

    Spatial growth rate of emerging SARS-CoV-2 lineages in England, September 2020-December 2021

    Get PDF
    This paper uses a robust method of spatial epidemiological analysis to assess the spatial growth rate of multiple lineages of SARS-CoV-2 in the local authority areas of England, September 2020–December 2021. Using the genomic surveillance records of the COVID-19 Genomics UK (COG-UK) Consortium, the analysis identifies a substantial (7.6-fold) difference in the average rate of spatial growth of 37 sample lineages, from the slowest (Delta AY.4.3) to the fastest (Omicron BA.1). Spatial growth of the Omicron (B.1.1.529 and BA) variant was found to be 2.81× faster than the Delta (B.1.617.2 and AY) variant and 3.76× faster than the Alpha (B.1.1.7 and Q) variant. In addition to AY.4.2 (a designated variant under investigation, VUI-21OCT-01), three Delta sublineages (AY.43, AY.98 and AY.120) were found to display a statistically faster rate of spatial growth than the parent lineage and would seem to merit further investigation. We suggest that the monitoring of spatial growth rates is a potentially valuable adjunct to outbreak response procedures for emerging SARS-CoV-2 variants in a defined population
    • 

    corecore