13 research outputs found

    Utilisation de l'imagerie 3D pour l'estimation indirecte de la biomasse aĂ©rienne des arbres de la forĂȘt semi-dĂ©cidue du sud-est du Cameroun

    No full text
    In addition to timber and non-timber forest products, tropical forests host the largest amount of terrestrial carbon in the world, thus its importance for reducing the effects of climate change. This carbon is generally estimated as aboveground biomass (AGB) because about half of the organic matter is carbon. Therefore, estimating AGB trough differentapproaches and the calibration of relationships between AGB and dendrometric parameters (allometric equations) are of great importance for the estimation carbon stock. From a functional perspective, data from AGB and leaf (e.g. leaf area) ameliorates our understanding of the functioning of tropical forests and their interactions with the atmosphere. However, destructive data sampling commonly used is cumbersome to implement and presents significant uncertainty. This leads to a considerable deficit of accurate data. Studies carried intemperate forests show that using terrestrial LiDAR technologies (TLS) may provide a solution to the limitations of destructive sampling. The TLS produce a tridimensional points cloud which describes with a high precision structures within their natural environment.Therefore, the overall goal of this thesis is to evaluate the potential of using TLS data reducing the lack of quality data observed in the Congo Basin. Here we used TLS data to: i) establish AGB and height-diameter (HD) allometric models ; ii) evaluate the potential impact of vertical variation of wood density (WD) on AGB estimates derived from TLS data ; and finally, iii) ameliorate LA estimation of trees and calibrate allometric model for the prediction of this area using data which derived from LiDAR data.At the local scale, (semi-deciduous forest of south East Cameroon), two datasets were collected. The first has 61 trees and opposes TLS data to destructive data. The second dataset collected in quadrats within plots had 712 trees and opposed TLS data to classic field inventory data. At the regional scale (forest from the Congo Basin), a uniform destructivesampling realized on 821 trees permitted us to obtain WD data, volume data and AGB for each compartment. Thanks to an automatic method of topology reconstruction and the geometry of trees (Quantitative Structure Model QSM) based on the adjustment of cylinders in the points cloud, we compared dendrometric parameters i.e. volumes, AGB and allometricmodels resulting from TLS data to those derived from the destructive and inventory sampling method.It appears that, the TLS estimates wood volume with great precision (88%) and low bias (4.6%). Related to this, the AGB allometric model (RÂČ=95%) established from TLS data is statistically similar to the one obtained with destructive data (RÂČ=98%). Nevertheless, theselast results depend on the manual editing of QSM for some compartments of the tree because obtained AGB with raw QSM (without manual edition) lead to a different allometry (RÂČ=93%). Despite these results, comparing total tree height data collected in plots scalerevealed that there is an average difference of 3 meters between total height derived from TLS and those collected from classical inventory. Using these two datasets separately led to the selection of a similar HD predictive model ; but the AGB estimated with predicted heights byinventory method is systematic underestimation of 10% per ha. The principal component analysis of WD by the different compartments helped in discriminating tree mayor types of WD vertical gradients: constant, decreasing, and increasing. These vertical gradients areconserved within species and are strongly correlated to species guilds, the basal density (WDStu) and the density issued of global databases (GWD). Thus, neglecting the existence of these gradients during the conversion of volumes derived from TLS to AGB leads to an individual bias (rising up to 73%) and an average bias of 8.12%. But using an unbiased estimator of WD defined in this work limits the bias to 0.75% with the WDStu and 1.19% with the GWD. Apart from these results on the AGB, manual segmentation between wood and trees realized before the automatic adjustment of the QSM made it possible to use thevoxelization technique on the leaves points cloud. This is with the aim of subdividing the tree crown in cubic volumes (voxels) to estimate the LA. Comparing LA derived from TLS to those obtained with the destructive method revealed that commonly using the spherical distribution as the “typical” angular distribution of leaves led to a fairly high average bias ofLA (17.28 %) against 6.5% when the distribution is computed per tree. This estimated leaf area (LA) is strongly correlated with DBH (r = 0.88) and AGB (r = 0.97). Linear models established between these variables produced RÂČ ranging from 72 to 95%, illustrating a strong intensity of the link between LA and these two variables.To conclude, using TLS data would facilitate the implementation of international programs whose objective to achieve Tier III levels of accuracy necessary in estimating carbon stocks as recommended by the Intergovernmental Panel on Climate change.Outre le bois et les produits forestiers non ligneux, les forĂȘts tropicales hĂ©bergent la plus grande quantitĂ© de carbone aĂ©rien au monde d’oĂč son importance pour la rĂ©duction des effets du changement climatique. Ce carbone est gĂ©nĂ©ralement estimĂ© sous forme de biomasse aĂ©rienne (AGB) car environ la moitiĂ© de la matiĂšre organique est constituĂ©e de carbone. Ainsi, l’estimation de l’AGB au travers de diffĂ©rentes approches et la calibration des relations entre l’AGB et les paramĂštres dendromĂ©triques (Ă©quations allomĂ©triques) sont d’une grande importance pour l’estimation des stocks de carbone. D’un point de vue fonctionnel, les donnĂ©es d’AGB ainsi que des donnĂ©es foliaires (e.g surface foliaire) permettent d’amĂ©liorer la comprĂ©hension du fonctionnement des forĂȘts tropicales et leurs interactions avec l'atmosphĂšre. Cependant, la collecte des donnĂ©es destructives est trĂšs lourde Ă  mettre en oeuvre et prĂ©sente une incertitude importante. Cela conduit Ă  un dĂ©ficit considĂ©rable de donnĂ©es de qualitĂ©. Or, des Ă©tudes initiĂ©es en forĂȘts tempĂ©rĂ©es montrent que l’utilisation de la technologie LiDAR terrestre (TLS) apporterait une solution aux limites de la collecte destructive. En effet, cet instrument produit une reprĂ©sentation tridimensionnelle de l’environnement scannĂ© sous forme de nuage de points. L’objectif gĂ©nĂ©ral de la prĂ©sente thĂšse est d’évaluer le potentiel de l’usage des donnĂ©es TLS sur la rĂ©duction du dĂ©ficit de donnĂ©es de qualitĂ© observĂ©e dans le bassin du Congo. Ainsi, il a Ă©tĂ© question : i) d’établir les modĂšles allomĂ©triques d’AGB et des hauteursdiamĂštres (HD) ; ii) d’évaluer l’impact potentiel des variations verticales de densitĂ© spĂ©cifique du bois (GWD) sur les estimations d’AGB dĂ©rivĂ©es des donnĂ©es TLS ; et enfin, iii) d’amĂ©liorer les estimations de surface foliaire (LA) et calibrer un modĂšle allomĂ©trique de prĂ©diction de cette surface basĂ©e sur les donnĂ©es dĂ©rivĂ©es du LiDAR terrestre.A l’échelle locale (forĂȘt semi-dĂ©cidue du Sud-est du Cameroun), deux jeux de donnĂ©es ont Ă©tĂ© collectĂ©s. Le premier est constituĂ© de 61 arbres et oppose les donnĂ©es TLS Ă  celles destructives. Le second, collectĂ© dans des quadrats de parcelles, est constituĂ© de 712 arbres et oppose les donnĂ©es TLS Ă  celles d’inventaires floristiques classiques. A l’échelle rĂ©gionale (forĂȘts du bassin du Congo) un Ă©chantillonnage destructif uniforme rĂ©alisĂ© sur 821 arbres a permis d’obtenir les donnĂ©es de WD, de volume et d’AGB par compartiment. GrĂące Ă  une mĂ©thode automatique de reconstruction de la topologie et de la gĂ©omĂ©trie des arbres (ModĂšle de Structure Quantitatif : QSM) basĂ©e sur l’ajustement de cylindres dans le nuage de points, nous avions pu comparer les paramĂštres dendromĂ©triques, les volumes, l’AGB et les modĂšles allomĂ©triques (d’AGB et HD) issus des donnĂ©es TLS Ă  ceux dĂ©rivĂ©s de la mĂ©thode destructive et inventaire.Il en ressort que le TLS estime avec une prĂ©cision de 88 % et un biais trĂšs faible de 4,6 % les volumes des arbres. AssociĂ© Ă  cela, le modĂšle allomĂ©trique d’AGB (RÂČ=95 %) Ă©tabli grĂące aux donnĂ©es TLS est statistiquement identique Ă  celui obtenu avec les donnĂ©es destructives (RÂČ=98 %). Toutefois, ce dernier rĂ©sultat repose sur l’édition manuelle des QSM pour certains compartiments de l’arbre car l’AGB obtenues avec des QSM bruts (sanscorrection manuelle) conduisent Ă  une allomĂ©trie (RÂČ=93 %) diffĂ©rente. Outre ces rĂ©sultats, la comparaison des donnĂ©es de hauteurs totales collectĂ©es dans les parcelles a rĂ©vĂ©lĂ© qu’il existe une diffĂ©rence moyenne de 3 mĂštres entre les hauteurs totales dĂ©rivĂ©es du TLS et celles issues de la mĂ©thode classique d’inventaire. L’usage sĂ©parĂ© de ces deux jeux de donnĂ©es a conduit Ă  la sĂ©lection d’un mĂȘme modĂšle de prĂ©diction de HD, mais l’AGB estimĂ©e avec les hauteurs prĂ©dites par la mĂ©thode d’inventaire est systĂ©matiquement sous-estimĂ© de 10 % par hectare.L’analyse en composante principale de la WD par compartiment a permis de discriminer trois types de grands gradients verticaux de WD Ă  savoir constant, dĂ©croissant et croissant. Ces gradients verticaux se conservent remarquablement au sein des espĂšces et sont fortement corrĂ©lĂ©s aux tempĂ©raments des espĂšces, Ă  la densitĂ© basale (WDStu) et Ă  la densitĂ© issue de la base de donnĂ©es globales (GWD). Ainsi, nĂ©gliger l’existence de ces gradients au cours de la conversion des volumes dĂ©rivĂ©es du TLS en AGB conduit Ă  un biais individuel (allant jusqu’à 73 %) et un biais moyen 8,12 %. L’usage d’un estimateur non biaisĂ© de la WD dĂ©fini dans ce travail permet de limiter ces biais Ă  0,75 % avec WDStu et 1,19 % avec la GWD. A part ces rĂ©sultats sur l’AGB, une approche par voxelisation (subdivision de l’espace en cube) du nuage de point de feuille segmentĂ© manuellement a permis l’estimation du LA Ă  l’échelle de l’arbre. La comparaison des LA dĂ©rivĂ©s du TLS Ă  ceux obtenus avec la mĂ©thode destructive rĂ©vĂšle que l’usage conventionnelle de la distribution sphĂ©rique comme distribution angulaire « type » de feuilles conduit Ă  un biais moyen d’estimation de LA assez Ă©levĂ© (17,28 %) contre 6,5 % lorsque la distribution rĂ©elle est obtenue par arbre. Ce LA estimĂ©e est fortement corrĂ©lĂ© au DBH (r = 0,88) et Ă  l’AGB (r = 0,97). Les modĂšles linĂ©aire Ă©tablis entre ces variables a produit des RÂČ allant de 72 Ă  95 % illustrant une forte intensitĂ© de la liaison entre le LA et ces deux variables.En somme, les rĂ©sultats de ce travail ont permis de mettre en Ă©vidence que l’utilisation des donnĂ©es TLS sont une grande plus-value pour la mise en oeuvre des programmes internationaux ayant pour objectif l’atteinte du tiers III de prĂ©cision nĂ©cessaire Ă  l'estimation des stocks de carbone tel que recommandĂ© par le Groupe d’Expert Intergouvernemental sur l’évolution du Climat

    Utilisation de l'imagerie 3D pour l'estimation indirecte de la biomasse aĂ©rienne des arbres de la forĂȘt semi-dĂ©cidue du sud-est du Cameroun

    No full text
    In addition to timber and non-timber forest products, tropical forests host the largest amount of terrestrial carbon in the world, thus its importance for reducing the effects of climate change. This carbon is generally estimated as aboveground biomass (AGB) because about half of the organic matter is carbon. Therefore, estimating AGB trough differentapproaches and the calibration of relationships between AGB and dendrometric parameters (allometric equations) are of great importance for the estimation carbon stock. From a functional perspective, data from AGB and leaf (e.g. leaf area) ameliorates our understanding of the functioning of tropical forests and their interactions with the atmosphere. However, destructive data sampling commonly used is cumbersome to implement and presents significant uncertainty. This leads to a considerable deficit of accurate data. Studies carried intemperate forests show that using terrestrial LiDAR technologies (TLS) may provide a solution to the limitations of destructive sampling. The TLS produce a tridimensional points cloud which describes with a high precision structures within their natural environment.Therefore, the overall goal of this thesis is to evaluate the potential of using TLS data reducing the lack of quality data observed in the Congo Basin. Here we used TLS data to: i) establish AGB and height-diameter (HD) allometric models ; ii) evaluate the potential impact of vertical variation of wood density (WD) on AGB estimates derived from TLS data ; and finally, iii) ameliorate LA estimation of trees and calibrate allometric model for the prediction of this area using data which derived from LiDAR data.At the local scale, (semi-deciduous forest of south East Cameroon), two datasets were collected. The first has 61 trees and opposes TLS data to destructive data. The second dataset collected in quadrats within plots had 712 trees and opposed TLS data to classic field inventory data. At the regional scale (forest from the Congo Basin), a uniform destructivesampling realized on 821 trees permitted us to obtain WD data, volume data and AGB for each compartment. Thanks to an automatic method of topology reconstruction and the geometry of trees (Quantitative Structure Model QSM) based on the adjustment of cylinders in the points cloud, we compared dendrometric parameters i.e. volumes, AGB and allometricmodels resulting from TLS data to those derived from the destructive and inventory sampling method.It appears that, the TLS estimates wood volume with great precision (88%) and low bias (4.6%). Related to this, the AGB allometric model (RÂČ=95%) established from TLS data is statistically similar to the one obtained with destructive data (RÂČ=98%). Nevertheless, theselast results depend on the manual editing of QSM for some compartments of the tree because obtained AGB with raw QSM (without manual edition) lead to a different allometry (RÂČ=93%). Despite these results, comparing total tree height data collected in plots scalerevealed that there is an average difference of 3 meters between total height derived from TLS and those collected from classical inventory. Using these two datasets separately led to the selection of a similar HD predictive model ; but the AGB estimated with predicted heights byinventory method is systematic underestimation of 10% per ha. The principal component analysis of WD by the different compartments helped in discriminating tree mayor types of WD vertical gradients: constant, decreasing, and increasing. These vertical gradients areconserved within species and are strongly correlated to species guilds, the basal density (WDStu) and the density issued of global databases (GWD). Thus, neglecting the existence of these gradients during the conversion of volumes derived from TLS to AGB leads to an individual bias (rising up to 73%) and an average bias of 8.12%. But using an unbiased estimator of WD defined in this work limits the bias to 0.75% with the WDStu and 1.19% with the GWD. Apart from these results on the AGB, manual segmentation between wood and trees realized before the automatic adjustment of the QSM made it possible to use thevoxelization technique on the leaves points cloud. This is with the aim of subdividing the tree crown in cubic volumes (voxels) to estimate the LA. Comparing LA derived from TLS to those obtained with the destructive method revealed that commonly using the spherical distribution as the “typical” angular distribution of leaves led to a fairly high average bias ofLA (17.28 %) against 6.5% when the distribution is computed per tree. This estimated leaf area (LA) is strongly correlated with DBH (r = 0.88) and AGB (r = 0.97). Linear models established between these variables produced RÂČ ranging from 72 to 95%, illustrating a strong intensity of the link between LA and these two variables.To conclude, using TLS data would facilitate the implementation of international programs whose objective to achieve Tier III levels of accuracy necessary in estimating carbon stocks as recommended by the Intergovernmental Panel on Climate change.Outre le bois et les produits forestiers non ligneux, les forĂȘts tropicales hĂ©bergent la plus grande quantitĂ© de carbone aĂ©rien au monde d’oĂč son importance pour la rĂ©duction des effets du changement climatique. Ce carbone est gĂ©nĂ©ralement estimĂ© sous forme de biomasse aĂ©rienne (AGB) car environ la moitiĂ© de la matiĂšre organique est constituĂ©e de carbone. Ainsi, l’estimation de l’AGB au travers de diffĂ©rentes approches et la calibration des relations entre l’AGB et les paramĂštres dendromĂ©triques (Ă©quations allomĂ©triques) sont d’une grande importance pour l’estimation des stocks de carbone. D’un point de vue fonctionnel, les donnĂ©es d’AGB ainsi que des donnĂ©es foliaires (e.g surface foliaire) permettent d’amĂ©liorer la comprĂ©hension du fonctionnement des forĂȘts tropicales et leurs interactions avec l'atmosphĂšre. Cependant, la collecte des donnĂ©es destructives est trĂšs lourde Ă  mettre en oeuvre et prĂ©sente une incertitude importante. Cela conduit Ă  un dĂ©ficit considĂ©rable de donnĂ©es de qualitĂ©. Or, des Ă©tudes initiĂ©es en forĂȘts tempĂ©rĂ©es montrent que l’utilisation de la technologie LiDAR terrestre (TLS) apporterait une solution aux limites de la collecte destructive. En effet, cet instrument produit une reprĂ©sentation tridimensionnelle de l’environnement scannĂ© sous forme de nuage de points. L’objectif gĂ©nĂ©ral de la prĂ©sente thĂšse est d’évaluer le potentiel de l’usage des donnĂ©es TLS sur la rĂ©duction du dĂ©ficit de donnĂ©es de qualitĂ© observĂ©e dans le bassin du Congo. Ainsi, il a Ă©tĂ© question : i) d’établir les modĂšles allomĂ©triques d’AGB et des hauteursdiamĂštres (HD) ; ii) d’évaluer l’impact potentiel des variations verticales de densitĂ© spĂ©cifique du bois (GWD) sur les estimations d’AGB dĂ©rivĂ©es des donnĂ©es TLS ; et enfin, iii) d’amĂ©liorer les estimations de surface foliaire (LA) et calibrer un modĂšle allomĂ©trique de prĂ©diction de cette surface basĂ©e sur les donnĂ©es dĂ©rivĂ©es du LiDAR terrestre.A l’échelle locale (forĂȘt semi-dĂ©cidue du Sud-est du Cameroun), deux jeux de donnĂ©es ont Ă©tĂ© collectĂ©s. Le premier est constituĂ© de 61 arbres et oppose les donnĂ©es TLS Ă  celles destructives. Le second, collectĂ© dans des quadrats de parcelles, est constituĂ© de 712 arbres et oppose les donnĂ©es TLS Ă  celles d’inventaires floristiques classiques. A l’échelle rĂ©gionale (forĂȘts du bassin du Congo) un Ă©chantillonnage destructif uniforme rĂ©alisĂ© sur 821 arbres a permis d’obtenir les donnĂ©es de WD, de volume et d’AGB par compartiment. GrĂące Ă  une mĂ©thode automatique de reconstruction de la topologie et de la gĂ©omĂ©trie des arbres (ModĂšle de Structure Quantitatif : QSM) basĂ©e sur l’ajustement de cylindres dans le nuage de points, nous avions pu comparer les paramĂštres dendromĂ©triques, les volumes, l’AGB et les modĂšles allomĂ©triques (d’AGB et HD) issus des donnĂ©es TLS Ă  ceux dĂ©rivĂ©s de la mĂ©thode destructive et inventaire.Il en ressort que le TLS estime avec une prĂ©cision de 88 % et un biais trĂšs faible de 4,6 % les volumes des arbres. AssociĂ© Ă  cela, le modĂšle allomĂ©trique d’AGB (RÂČ=95 %) Ă©tabli grĂące aux donnĂ©es TLS est statistiquement identique Ă  celui obtenu avec les donnĂ©es destructives (RÂČ=98 %). Toutefois, ce dernier rĂ©sultat repose sur l’édition manuelle des QSM pour certains compartiments de l’arbre car l’AGB obtenues avec des QSM bruts (sanscorrection manuelle) conduisent Ă  une allomĂ©trie (RÂČ=93 %) diffĂ©rente. Outre ces rĂ©sultats, la comparaison des donnĂ©es de hauteurs totales collectĂ©es dans les parcelles a rĂ©vĂ©lĂ© qu’il existe une diffĂ©rence moyenne de 3 mĂštres entre les hauteurs totales dĂ©rivĂ©es du TLS et celles issues de la mĂ©thode classique d’inventaire. L’usage sĂ©parĂ© de ces deux jeux de donnĂ©es a conduit Ă  la sĂ©lection d’un mĂȘme modĂšle de prĂ©diction de HD, mais l’AGB estimĂ©e avec les hauteurs prĂ©dites par la mĂ©thode d’inventaire est systĂ©matiquement sous-estimĂ© de 10 % par hectare.L’analyse en composante principale de la WD par compartiment a permis de discriminer trois types de grands gradients verticaux de WD Ă  savoir constant, dĂ©croissant et croissant. Ces gradients verticaux se conservent remarquablement au sein des espĂšces et sont fortement corrĂ©lĂ©s aux tempĂ©raments des espĂšces, Ă  la densitĂ© basale (WDStu) et Ă  la densitĂ© issue de la base de donnĂ©es globales (GWD). Ainsi, nĂ©gliger l’existence de ces gradients au cours de la conversion des volumes dĂ©rivĂ©es du TLS en AGB conduit Ă  un biais individuel (allant jusqu’à 73 %) et un biais moyen 8,12 %. L’usage d’un estimateur non biaisĂ© de la WD dĂ©fini dans ce travail permet de limiter ces biais Ă  0,75 % avec WDStu et 1,19 % avec la GWD. A part ces rĂ©sultats sur l’AGB, une approche par voxelisation (subdivision de l’espace en cube) du nuage de point de feuille segmentĂ© manuellement a permis l’estimation du LA Ă  l’échelle de l’arbre. La comparaison des LA dĂ©rivĂ©s du TLS Ă  ceux obtenus avec la mĂ©thode destructive rĂ©vĂšle que l’usage conventionnelle de la distribution sphĂ©rique comme distribution angulaire « type » de feuilles conduit Ă  un biais moyen d’estimation de LA assez Ă©levĂ© (17,28 %) contre 6,5 % lorsque la distribution rĂ©elle est obtenue par arbre. Ce LA estimĂ©e est fortement corrĂ©lĂ© au DBH (r = 0,88) et Ă  l’AGB (r = 0,97). Les modĂšles linĂ©aire Ă©tablis entre ces variables a produit des RÂČ allant de 72 Ă  95 % illustrant une forte intensitĂ© de la liaison entre le LA et ces deux variables.En somme, les rĂ©sultats de ce travail ont permis de mettre en Ă©vidence que l’utilisation des donnĂ©es TLS sont une grande plus-value pour la mise en oeuvre des programmes internationaux ayant pour objectif l’atteinte du tiers III de prĂ©cision nĂ©cessaire Ă  l'estimation des stocks de carbone tel que recommandĂ© par le Groupe d’Expert Intergouvernemental sur l’évolution du Climat

    Towards a robust framework to quantify LAI and radiative transfer variations at tree and landscape levels in the tropics

    No full text
    International audienceUnprecedented opportunities are now at hand to bridge the gap between forest seasonal dynamics, flux tower data and apparent temporal signals in vegetation indices. They pass through progress in observational systems at different scales: UAV and ground based LiDAR and multispectral sensors (phenocams) and growing constellations of (nano)satellites. These systems provide detailed structural and temporal information complementing more traditional destructive data collection campaigns, permanent forest plots and tree climbing. The unprecedented amounts of data obtained allow documenting detailed foliage dynamics at tree to landscape levels, and hence in turn to quantify the budget of matter and energy exchange between plants and the atmosphere. This budget can potentially become so resolute as to allow characterizing plant-plant or even within-plant interactions, and thus feed into next generation individual plant growth models (FSPMs). This talk will present some results of ongoing collaborative work in Central Africa and French Guyana, highlight some difficulties as well as intended research directions

    Mesurer l’invisible : la dure tĂąche de calculer le stock et le flux de carbone d'une forĂȘt

    No full text
    The ConservationDes poumons verts. De par leur grande capacitĂ© Ă  Ă©changer du CO2 et de l’oxygĂšne, voici comment sont souvent dĂ©crites les forĂȘts tropicales. En fixant par la photosynthĂšse le CO2, principal gaz Ă  effet de serre, ces forĂȘts constituent en effet un maillon crucial dans la rĂ©gulation du climat global, et leur protection reprĂ©sente un enjeu bien connu des dĂ©cideurs comme du grand public. Mais la prise en compte des stocks et flux de carbone de ces forĂȘts dans le bilan global des gaz Ă  effet de serre est loin d’ĂȘtre une tĂąche facile. Il s’agit mĂȘme de l’un des compartiments les moins bien connus. MĂȘme les stocks et flux de carbone des ocĂ©ans sont mieux quantifiĂ©s

    Ethnicity Differences in Uses and Management Practices of Bitter Kola Trees (Garcinia kola) in Cameroon

    No full text
    International audienceEthnicity Differences in Use Values and Management Practices of Bitter Kola (Garcinia kola) in Cameroon. Bitter kola (Garcinia kola) is an indigenous multipurpose tree species in West and Central Africa, threatened by overexploitation and classified by the IUCN as vulnerable. Understanding local knowledge and management patterns in different socioecological contexts could contribute to designing strategies for conservation and long-term use of the species. In order to characterize the parts of the plant and the harvesting techniques that are used by different ethnic groups in Cameroon, we conducted surveys through the use of semi-structured questionnaires (N = 182) in six different sites covering different agro-ecological zones where the species is present (forest and savanna). Ethnic groups from the savanna agro-ecological zone shared similar patterns in G. kola organs/parts used and harvesting techniques, but these patterns differed among ethnic groups from the savanna and forest zones and within the forest zone. Ethnic groups from the savanna zone mainly harvest the species for its seeds that are used as stimulants. Conversely ethnic groups from the forest zone mainly collect bark and roots, and uses differ between agriculturalists (Fang and Bassa) and hunter-gatherers (Baka). These patterns have direct consequences on species management practices. Savanna farmers applied sustainable harvesting as they extract fruits and seeds and planting more trees in order to increase the species’ contribution to their livelihood. People in the forest zone destructively felled standing trees, threatening the species in its natural environment. The influence of these results on the conservation status of the species in the region are discussed

    Domestication Syndrome in Dacryodes edulis (Burseraceae): Comparison of Morphological and Biochemical Traits between Wild and Cultivated Populations

    No full text
    International audienceFor millennia, people have harvested fruits from the wild for their alimentation. Gradually, they have started selecting wild individuals presenting traits of interest, protecting and cultivating them. This was the starting point of their domestication. The passage from a wild to a cultivated status is accompanied by a modification of a number of morphological and genetic traits, commonly known as the domestication syndrome. We studied the domestication syndrome in Dacryodes edulis (G.Don) H.J.Lam (known as ‘African plum’ or ‘safoutier/prunier’), a socio-economically important indigenous fruit tree species in West and Central Africa. We compared wild and cultivated individuals for their sex distribution; flower, fruit and seed morphometric characteristics; seed germination temporal dynamic and fruit lipid composition. We found a higher percentage of male and male-hermaphrodite sexual types in wild populations than in cultivated ones; a lower fruit and seed mass in wild individuals; and similar mean time of germination, oil content and fatty acid composition between wild and cultivated individuals. Our results are interpreted in light of the presence of a domestication syndrome in D. eduli

    Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: A comparison with traditional destructive approach

    No full text
    1.Calibration of local, regional or global allometric equations to estimate biomass at the tree level constitutes a significant burden on projects aiming at reducing Carbon emissions from forest degradation and deforestation. The objective of this contribution is to assess the precision and accuracy of Terrestrial Laser Scanning (TLS) for estimating volumes and aboveground biomass (AGB) of the woody parts of tropical trees, and for the calibration of allometric models. 2.We used a destructive dataset of 61 trees, with diameters and AGB of up to 186.6 cm and 60 Mg respectively, which were scanned, felled and weighed in the semi-deciduous forests of eastern Cameroon. We present an operational approach based on available software allowing to retrieve TLS volume with low bias and high accuracy for large tropical trees. Edition of the obtained models proved necessary, mainly to account for the complexity of buttressed parts of tree trunks, which were separately modelled through a meshing approach, and to bring a few corrections in the topology and geometry of branches, thanks to the AMAPStudio-Scan software. 3.Over the entire dataset, TLS derived volumes proved highly reliable for branches larger than 5 cm in diameter. The volumes of the remaining woody parts estimated for stumps, stems and crowns as well as for the whole tree proved very accurate (RMSE below 2.81% and RÂČ above of 0.98) and unbiased. Once converted to AGB using mean local specific wood density values, TLS estimates allowed calibrating a biomass allometric model with coefficients statistically undistinguishable from those of a model based on destructive data. Un-edited Quantitative Structure Model (QSM) however lead to systematic overestimations of woody volumes and subsequently to significantly different allometric parameters. 4.We can therefore conclude that the non-destructive TLS approach can now be used as an operational alternative to traditional destructive sampling to build the allometric equations, although attention must be paid to the quality of QSM model adjustments to avoid systematic bia

    Upscaling Forest Biomass from Field to Satellite Measurements: Sources of Errors and Ways to Reduce Them

    No full text
    International audienceForest biomass monitoring is at the core of the research agenda due to the critical importance of forest dynamics in the carbon cycle. However, forest biomass is never directly measured; thus, upscaling it from trees to stand or larger scales (e.g., countries, regions) relies on a series of statistical models that may propagate large errors. Here, we review the main steps usually adopted in forest aboveground biomass mapping, highlighting the major challenges and perspectives. We show that there is room for improvement along the scaling-up chain from field data collection to satellite-based large-scale mapping, which should lead to the adoption of effective practices to better control the propagation of errors. We specifically illustrate how the increasing use of emerging technologies to collect massive amounts of high-quality data may significantly improve the accuracy of forest carbon maps. Furthermore, we discuss how sources of spatially structured biases that directly propagate into remote sensing models need to be better identified and accounted for when extrapolating forest carbon estimates, e.g., through a stratification design. We finally discuss the increasing realism of 3D simulated stands, which, through radiative transfer modelling, may contribute to a better understanding of remote sensing signals and open avenues for the direct calibration of large-scale products, thereby circumventing several current difficulties

    Using volume-weighted average wood specific gravity of trees reduces bias in aboveground biomass predictions from forest volume data

    Full text link
    With the improvement of remote sensing techniques for forest inventory application such as terrestrial LiDAR, tree volume can now be measured directly, without resorting to allometric equations. However, wood specific gravity (WSG) remains a crucial factor for converting these precise volume measurements into unbiased biomass estimates. In addition to this WSG values obtained from samples collected at the base of the tree (WSGBase) or from global repositories such as Dryad (WSGDryad) can be substantially biased relative to the overall tree value. Our aim was to assess and mitigate error propagation at tree and stand level using a pragmatic approach that could be generalized to National Forest Inventories or other carbon assessment efforts based on measured volumetric data. In the semi-deciduous forests of Eastern Cameroon, we destructively sampled 130 trees belonging to 15 species mostly represented by large trees (up to 45 Mg). We also used stand-level dendrometric parameters from 21 1-ha plots inventoried in the same area to propagate the tree-level bias at the plot level. A new descriptor, volume average-weighted WSG (WWSG) of the tree was computed by weighting the WSG of tree compartments by their relative volume prior to summing at tree level. As WWSG cannot be assessed non-destructively, linear models were adjusted to predict field WWSG and revealed that a combination of WSGDryad, diameter at breast height (DBH) and species stem morphology (Sm) were significant predictors explaining together 72% of WWSG variation. At tree level, estimating tree aboveground biomass using WSGBase and WSGDryad yielded overestimations of 10% and 7% respectively whereas predicted WWSG only produced an underestimation of less than 1%. At stand-level, WSGBase and WSGDryad gave an average simulated bias of 9% (S.D. = ±7) and 3% (S.D. = ±7) respectively whereas predicted WWSG reduced the bias by up to 0.1% (S.D. = ±8). We also observed that the stand-level bias obtained with WSGBase and WSGDryad decreased with total plot size and plot area. The systematic bias induced by WSGBase and WSGDryad for biomass estimations using measured volumes are clearly not negligible but yet generally overlooked. A simple corrective approach such as the one proposed with our predictive WWSG model is liable to improve the precision of remote sensing-based approaches for broader scale biomass estimations
    corecore