88 research outputs found

    Neuron participation in a synchrony-encoding assembly

    Get PDF
    BACKGROUND: Synchronization of action potentials between neurons is considered to be an encoding process that allows the grouping of various and multiple features of an image leading to a coherent perception. How this coding neuronal assembly is configured is debated. We have previously shown that the magnitude of synchronization between excited neurons is stimulus-dependent. In the present investigation we compare the levels of synchronization between synchronizing individual neurons and the synchronizing pool of cells to which they belong. RESULTS: Even though neurons belonged to their respective pools, some cells synchronized for all presented stimuli while others were rather selective and only a few stimulating conditions produced a significant synchronization. In addition the experiments show that one synchronizing pair rarely replicates the level of synchrony between corresponding groups of units. But when synchronizing clusters of neurons increase in number, the correlation (measured as a coefficient of determination) between unit synchronization and the synchronization between the entire pools of cells to which individual neurons belong improves. CONCLUSION: These results prompt the hypothesis that random or spontaneous synchronization becomes progressively less important, whereas coincident spikes related to encoding properties of targets gain significance because a particular configuration of an image biases the excitatory inputs in favor of connections driven by the applied features of the stimulus

    Are Sensory Neurons in the Cortex Committed to Original Trigger Features?

    Get PDF
    Sensory cortices are inherently dynamic and exhibit plasticity in response to a variety of stimuli. Few studies have revealed that depending upon the nature of stimuli, excitation of the corresponding sensory region also evokes a response from other neighboring connected areas. It is even more striking, when somatosensory areas undergo reorganization as a result of an intentional disturbance and further explored as a paradigm to understand neuroplasticity. In addition, it has also been proved that drugs too can be used as a model to explore potential plasticity in sensory systems. To this aim, through electrophysiology in cats, we explored that visual neurons, throughout the cortical column, have a tendency to alter their inherent properties even when presented a non-visual stimulus. Furthermore, it was explored in mice, how the application of drugs (serotonin and ketamine) modulates potential plasticity within the visual system. Indeed, we found a shift in orientation tuning of neurons indicated by Gaussian tuning fits in both scenarios. These results together suggest that sensory cortices are capable of adapting to intense experiences by going through a recalibration of corresponding or neighboring sensory area(s) to redirect the sensory function and exhibit remarkable extent of neuroplasticity within the brain

    Adaptive behavior of neighboring neurons during adaptation-induced plasticity of orientation tuning in V1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sensory neurons display transient changes of their response properties following prolonged exposure to an appropriate stimulus (adaptation). In adult cat primary visual cortex, orientation-selective neurons shift their preferred orientation after being adapted to a non-preferred orientation. The direction of those shifts, towards (attractive) or away (repulsive) from the adapter depends mostly on adaptation duration. How the adaptive behavior of a neuron is related to that of its neighbors remains unclear.</p> <p>Results</p> <p>Here we show that in most cases (75%), cells shift their preferred orientation in the same direction as their neighbors. We also found that cells shifting preferred orientation differently from their neighbors (25%) display three interesting properties: (i) larger variance of absolute shift amplitude, (ii) wider tuning bandwidth and (iii) larger range of preferred orientations among the cluster of cells. Several response properties of V1 neurons depend on their location within the cortical orientation map. Our results suggest that recording sites with both attractive and repulsive shifts following adaptation may be located in close proximity to iso-orientation domain boundaries or pinwheel centers. Indeed, those regions have a more diverse orientation distribution of local inputs that could account for the three properties above. On the other hand, sites with all cells shifting their preferred orientation in the same direction could be located within iso-orientation domains.</p> <p>Conclusions</p> <p>Our results suggest that the direction and amplitude of orientation preference shifts in V1 depend on location within the orientation map. This anisotropy of adaptation-induced plasticity, comparable to that of the visual cortex itself, could have important implications for our understanding of visual adaptation at the psychophysical level.</p

    Synchrony between orientation-selective neurons is modulated during adaptation-induced plasticity in cat visual cortex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Visual neurons respond essentially to luminance variations occurring within their receptive fields. In primary visual cortex, each neuron is a filter for stimulus features such as orientation, motion direction and velocity, with the appropriate combination of features eliciting maximal firing rate. Temporal correlation of spike trains was proposed as a potential code for linking the neuronal responses evoked by various features of a same object. In the present study, synchrony strength was measured between cells following an adaptation protocol (prolonged exposure to a non-preferred stimulus) which induce plasticity of neurons' orientation preference.</p> <p>Results</p> <p>Multi-unit activity from area 17 of anesthetized adult cats was recorded. Single cells were sorted out and (1) orientation tuning curves were measured before and following 12 min adaptation and 60 min after adaptation (2) pairwise synchrony was measured by an index that was normalized in relation to the cells' firing rate. We first observed that the prolonged presentation of a non-preferred stimulus produces attractive (58%) and repulsive (42%) shifts of cell's tuning curves. It follows that the adaptation-induced plasticity leads to changes in preferred orientation difference, i.e. increase or decrease in tuning properties between neurons. We report here that, after adaptation, the neuron pairs that shared closer tuning properties display a significant increase of synchronization. Recovery from adaptation was accompanied by a return to the initial synchrony level.</p> <p>Conclusion</p> <p>We conclude that synchrony reflects the similarity in neurons' response properties, and varies accordingly when these properties change.</p

    A flexible bio-inspired hierarchical model for analyzing musical timbre

    Get PDF
    A flexible and multipurpose bio-inspired hierarchical model for analyzing musical timbre is presented in this paper. Inspired by findings in the fields of neuroscience, computational neuroscience, and psychoacoustics, not only does the model extract spectral and temporal characteristics of a signal, but it also analyzes amplitude modulations on different timescales. It uses a cochlear filter bank to resolve the spectral components of a sound, lateral inhibition to enhance spectral resolution, and a modulation filter bank to extract the global temporal envelope and roughness of the sound from amplitude modulations. The model was evaluated in three applications. First, it was used to simulate subjective data from two roughness experiments. Second, it was used for musical instrument classification using the k-NN algorithm and a Bayesian network. Third, it was applied to find the features that characterize sounds whose timbres were labeled in an audiovisual experiment. The successful application of the proposed model in these diverse tasks revealed its potential in capturing timbral information

    High noise correlation between the functionally connected neurons in emergent V1 microcircuits

    Get PDF
    Abstract : Neural correlations (noise correlations and cross-correlograms) are widely studied to infer functional connectivity between neurons. High noise correlations (Rsc) between neurons have been reported to increase the encoding accuracy of a neuronal population; however, low noise correlations have also been documented to play a critical role in cortical microcircuits. Therefore, the role of noise correlations in neural encoding is highly debated. To this aim, through multi-electrodes, we recorded neuronal ensembles in the primary visual cortex of anesthetized cats. By computing cross-correlograms (CCGs), we divulged the functional network (microcircuit) between neurons within an ensemble in relation to a specific orientation. We show that functionally connected neurons systematically exhibit higher noise correlations than functionally unconnected neurons in a microcircuit that is activated in response to a particular orientation. Furthermore, the mean strength of noise correlations for the connected neurons increases steeply than the unconnected neurons as a function of the resolution-window used to calculate noise correlations. We suggest that, neurons that display high noise correlations in emergent microcircuits feature functional connections which are inevitable for information encoding in the primary visual cortex

    On the Importance of Correspondence Between Shapes and Timbre

    Get PDF
    Presented at the 20th International Conference on Auditory Display (ICAD2014), June 22-25, 2014, New York, NY.The results of a preliminary study of the audio-visual correspondence between musical timbre and visual shapes are reported. 22 participants had to play 20 musical sounds and choose a shape for each. An association between timbre and visual shapes emerged. Soft timbres seem to match with rounded shapes, harsh timbres with sharp angular shapes and timbres having elements of softness and harshness together with a mixture of the two previous shapes. The correspondence between timbres and shapes should lend itself to the development of perceptually supported musical interfaces and substitution systems. A larger scale experiment with more sounds and participants is underway and confirms the preliminary results reported in this paper

    Synergistic activity between primary visual neurons

    Get PDF
    Abstract : Cortical microcircuitry plays a pivotal role in encoding sensory information reaching the cortex. However, the fundamental knowledge concerning the mechanisms that govern feature-encoding by these sub-networks is still sparse. Here, we show through multi electrode recordings in V1 of conventionally prepared anesthetized cats, that an avalanche of synergistic neural activity occurs between functionally connected neurons in a cell assembly in response to the presented stimulus. The results specifically show that once the reference neuron spikes in a connected neuron-pair, it facilitates the response of its companion (target) neuron for 50 ms and, thereafter, the excitability of the target neuron declines. On the other hand, the functionally unconnected neurons do not facilitate each other’s activity within the 50 ms time-window. The added excitation (facilitation) of connected neurons is almost four times the responsiveness of unconnected neurons. This suggests that connectedness confers the added excitability to neurons; consequently leading to feature-encoding within the emergent 50 ms-period. Furthermore, the facilitation significantly decreases as a function of orientation selectivity spread

    Electrophysiological and firing properties of neurons: categorizing soloists and choristers in primary visual cortex

    Get PDF
    Abstract: Visual processing in the cortex involves various aspects of neuronal properties such as morphological, electrophysiological and molecular. In particular, the neural firing pattern is an important indicator of dynamic circuitry within a neuronal population. Indeed, in microcircuits, neurons act as soloists or choristers wherein the characteristical activity of a ‘soloist’ differs from the firing pattern of a ‘chorister’. Both cell types correlate their respective firing rate with the global populational activity in a unique way. In the present study, we sought to examine the relationship between the spike shape (thin spike neurons and broad spike neurons) of cortical neurons recorded from V1, their firing levels and their propensity to act as soloists or choristers. We found that thin spike neurons, which exhibited higher levels of firing, generally correlate their activity with the neuronal population (choristers). On the other hand, broad spike neurons showed lower levels of firing and demonstrated weak correlations with the assembly (soloists). A major consequence of the present study is: estimating the correlation of neural spike trains with their neighboring population is a predictive indicator of spike waveforms and firing level. Indeed, we found a continuum distribution of coupling strength ranging from weak correlation-strength (attributed to low-firing neurons) to high correlation-strength (attributed to high-firing neurons). The tendency to exhibit high- or low-firing is conducive to the spike shape of neurons. Our results offer new insights into visual processing by showing how high-firing rate neurons (mostly thin spike neurons) could modulate the neuronal responses within cell-assemblies
    corecore