Are Sensory Neurons in the Cortex Committed to Original Trigger Features?

Abstract

Sensory cortices are inherently dynamic and exhibit plasticity in response to a variety of stimuli. Few studies have revealed that depending upon the nature of stimuli, excitation of the corresponding sensory region also evokes a response from other neighboring connected areas. It is even more striking, when somatosensory areas undergo reorganization as a result of an intentional disturbance and further explored as a paradigm to understand neuroplasticity. In addition, it has also been proved that drugs too can be used as a model to explore potential plasticity in sensory systems. To this aim, through electrophysiology in cats, we explored that visual neurons, throughout the cortical column, have a tendency to alter their inherent properties even when presented a non-visual stimulus. Furthermore, it was explored in mice, how the application of drugs (serotonin and ketamine) modulates potential plasticity within the visual system. Indeed, we found a shift in orientation tuning of neurons indicated by Gaussian tuning fits in both scenarios. These results together suggest that sensory cortices are capable of adapting to intense experiences by going through a recalibration of corresponding or neighboring sensory area(s) to redirect the sensory function and exhibit remarkable extent of neuroplasticity within the brain

    Similar works