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Abstract—A flexible and multipurpose bio-inspired hierarchi-
cal model for analyzing musical timbre is presented in this paper.
Inspired by findings in the fields of neuroscience, computational
neuroscience, and psychoacoustics, not only does the model
extract spectral and temporal characteristics of a signal, but it
also analyzes amplitude modulations on different timescales. It
uses a cochlear filter bank to resolve the spectral components of
a sound, lateral inhibition to enhance spectral resolution, and a
modulation filter bank to extract the global temporal envelope
and roughness of the sound from amplitude modulations. The
model was evaluated in three applications. First, it was used
to simulate subjective data from two roughness experiments.
Second, it was used for musical instrument classification using the
k-NN algorithm and a Bayesian network. Third, it was applied
to find the features that characterize sounds whose timbres were
labeled in an audiovisual experiment. The successful application
of the proposed model in these diverse tasks revealed its potential
in capturing timbral information.

Index Terms—Timbre, cochlear filter bank, modulation filter
bank, temporal envelope, time-averaged spectrum, instantaneous
roughness, musical instrument classification, Bayesian network,
multimodal timbre characterization.

I. INTRODUCTION
A. Timbre

OUNDS have three major characteristics: pitch, loudness

and timbre. Pitch and loudness are perceptual measures
related to the fundamental frequency and the intensity of
a sound, respectively. Timbre is a quality that allows to
distinguish between the sounds that have the same pitch,
loudness and duration [1-4]. It is a multi-dimensional attribute
and mainly depends on harmonic content, attack and decay,
and vibrato [1, 5, 6]. Attack is the rapid increase of a sound’s
amplitude to its maximum value while decay is the gradual
decrease of the amplitude. Vibrato is the periodic change in
the pitch of a sound.

The attributes of timbre have been investigated in several
studies [7—15]. In such studies, subjects are typically asked to
rate timbral similarities (or dissimilarities) of all stimulus pairs
for a stimulus set with equalized pitch, loudness, and duration.
The similarity ratings are then analyzed using Multidimen-
sional Scaling (MDS) to construct an N-dimensional timbre
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space in which the subjective similarities are represented by
the distances among the stimuli [3, 16, 17]. A 3D space has
been found in most studies, where spectral centroid and attack
time are the first and the second dimensions. However, for the
third dimension, different features such as spectral flux [9, 16],
pitch strength, noisiness [14], and spectral deviation [11] have
been proposed as there is no consensus on what it encodes
[9, 16].

In general, timbre has many attributes, which can be cat-
egorized into three classes: temporal (e.g. attack time, decay
time, temporal centroid [9-12, 14, 16]), spectral (e.g. spectral
centroid, spectral deviation, noisiness, spectral skewness [9—
12, 14, 16]), and spectro-temporal (e.g. spectral flux, rough-
ness, fluctuation strength [9-11, 16]). Most of these features
are formally defined in [18] and [19].

B. Applications and Models of Timbre

Timbre plays a key role in recognition and localization of
sound sources [13, 20] as well as stream segregation in Audi-
tory Scene Analysis (ASA) [21-24]. It has been widely used
in applications such as instrument recognition in monophonic
and polyphonic music [25, 26], music genre recognition [27],
and music retrieval [27, 28].

Different models have been proposed for timbre. Chroma
contours were used to describe music timbre in [29]. The
contours were found by mapping the spectral content to a
single octave (which was divided into 12 bins). Chroma-
based features were also used in [28] where a variant of
Mel-Frequency Cepstral Coefficients (MFCCs) called Pitch-
Frequency Cepstral Coefficients (PFCCs) were estimated on
a pitch scale (instead of the Mel scale) and mapped onto
the 12 chroma bins. Leveau et al. [30] modeled sounds of
an instrument as a linear combination of a set of harmonic
atoms, where the atoms were defined as the sum of harmonic
partials of that particular instrument. Timbre was encoded by
the harmonic atoms. The timbre model proposed in [26] was
based on the evolution of spectral envelope peaks derived
from sinusoidal modeling, followed by principal component
analysis (PCA). Patil et al. used the spectro-temporal receptive
fields (STRFs) of neurons to model timbre [31]. The STRFs,
which represent neurons’ selectivity to spectral and temporal
modulations, were modeled as 2D wavelets that were Gabor-
shaped in frequency and exponential in time. Timbre was
modeled as follows: a spectrogram was obtained by filtering a
signal with a bank of constant-Q asymmetric bandpass filters.
The spectrogram was then convolved with the 2D STRFs,
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resulting in a 4D representation, which was later collapsed
over frequency and integrated over time. As a result, a 2D
spectrotemporal modulation profile was obtained for timbre.

C. The Contributions of This Paper

The tendency to reduce the complexity of timbre repre-
sentations and achieve high performance in specific tasks
has favored models that only capture the distinctive timbral
features of the sounds used in those specific tasks. However,
a good model of timbre, regardless of its applications, should
be able to capture not only the distinctive features such as
spectral content, attack, and decay, but also other features such
as amplitude modulations which are known to contribute to
timbre richness.

In this paper, we propose a flexible and multipurpose bio-
inspired hierarchical model for analyzing musical timbre. In-
spired by findings in the fields of neuroscience, computational
neuroscience, and psychoacoustics, not only does the model
extract spectral and temporal characteristics of a signal, but it
also analyzes amplitude modulations on different timescales
to extract roughness and global temporal envelope. It uses a
cochlear filter bank to resolve the spectral components of a
sound, lateral inhibition to enhance spectral resolution, and a
modulation filter bank to extract the global temporal envelope
and roughness of the sound from amplitude modulations. As
stated in section I-A, a timbre space is usually constructed
from individual features such as spectral centroid and attack
time, whereas in this paper, timbre is represented by three
profiles (curves):

¢ a time-averaged spectrum, which contains important in-
formation about harmonics, pitch, and resonances (or
formants).

o a global temporal envelope, which is estimated from
slow amplitude modulations and encodes the global time
evolution of the spectral components of a sound.

« an instantaneous roughness function, which is estimated
from fast amplitude modulations and encodes the local
fluctuations of the spectral components of a sound.

The model proposed in this paper provides a novel framework
which extracts these profiles hierarchically, as opposed to other
studies, where independent frameworks have been designed to
extract spectral and temporal features. In addition, efficient
integration of the existing roughness models [32-34] into
timbre models seems very hard as this requires significant
architectural modifications in both. Despite that, roughness
estimation is an integral part of our timbre model. Moreover,
unlike other roughness models, where only a single measure is
estimated, we extract an instantaneous function for roughness
as it varies with time.

In addition to the specific timbre representation described
above, most of the spectral, temporal, and spectrotemporal
features reviewed in section I-A can still be extracted from
either the three profiles or other outputs at the different stages
of the hierarchical model. Therefore, our model lends itself
to a broad range of applications, which is one of its most
important capabilities.
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We evaluated the proposed model in three different appli-
cations to demonstrate its potential as a general framework
for timbre representation: 1) evaluating roughness extraction
and comparing results with subjective data from a previous
psychoacoustic study [35] 2) musical instrument classification
using k-NN and a Bayesian network and 3) selection of timbral
features that best represent the sounds that had been labeled
in an audio-visual experiment [36].

The rest of this paper is structured as follows: the model is
described in section II and the applications and their results
are presented in section III. Section IV includes the discussion
of the model and the results while conclusions are presented
in section V.

II. SYSTEM DESCRIPTION

The timbre model comprises three main modules: a bank
of cochlear filters, a lateral inhibition module and a roughness
extraction module. These modules, as well as the estimation of
the three profiles of timbre, i.e. the global temporal envelope,
the time-averaged spectrum, and instantaneous roughness are
described in detail in this section.

A. Cochlear Filter Bank

The cochlear filter bank is based on the ERBIet transform,
which is provided with the large time/frequency analysis
toolbox (LTFAT) [37, 38]. The ERBIlet transform covers fre-
quencies even as low as DC [37]. This is important as 1)
the proposed model may be used in applications where very
low-pitched notes such as Ey (20.60 Hz) and Fy (21.83 Hz)
should be processed and 2) the envelopes of the cochlear filter
bank outputs, which include very low frequency content, are
analyzed by a modulation filter bank that is also based on the
ERBIet transform (section II-C2).

In the ERBIet transform, filters are constructed from Gaus-
sian windows in the frequency domain on the ERB (equivalent
rectangular bandwidth [39]) scale, where the ERB of a given
filter centered at f. (in Hz) is given by:

Je

: 1

9.265 M

Furthermore, the number of ERBs below a given frequency f
(in Hz) is given by:

ERB(f.) = 24.7+

f
228.8155 @
The spectrum of the input signal, which is obtained by the
Fourier transform, is multiplied by the frequency response of
each filter and transformed back to the time domain using
the inverse Fourier transform. Thus, the ERBlet transform
performs a type of multi-resolution analysis on a signal as
the ERBlets have different bandwidths.

Our cochlear filter bank consists of 84 filters from FRB,,,m
0.9981 to 42.4184 (2 filters per ERB), covering frequencies
from 20 Hz to 22050 Hz. We designed these filters for
a sampling frequency of 44100 Hz. Thanks to the ERBlet
transform, the number of filters can easily be adapted for
different applications to enhance the spectral resolution. In
practice, one also faces a trade-off between the number of

ERByum(f) = 9.265In(1 +
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Fig. 1. Time-averaged spectrum computation: the cochlear filter bank de-
composes the input into 84 components. The envelopes of these components
are extracted, downsampled by a factor of 10, and then compressed. It is not
necessary to use lowpass filters before downsampling for the signals used in
section III. Lateral inhibition results in sharper peaks in the spectrum. The
time-averaged spectrum extracted from the outputs of the lateral inhibition
block is a characteristic of timbre. The downsampled and compressed en-
velopes e;[n] are used in Fig. 3 to estimate roughness and the global temporal
envelope.

filters and the complexity of the system. In this research,
84 filters provided satisfactory results for the applications
presented in section III. We also modified the design of the
LTFAT’s ERBlets to remove aliasing for the bandpass filters
that were centered at very low or high frequencies. Moreover,
the gains of the filters in the initial ERBlets were originally
adjusted to allow for perfect reconstruction [37]. Since signal
reconstruction was not necessary in the present study, the gains
of the filters were equalized. This simple design choice does
not affect the performance of the ERBlets, given that they are
linear filters.

As Fig. 1 shows, the cochlear filter bank decomposes the
digital signal z[n] into its components {z;[n]; | = 1,2, ..., 84},
where [ is the index of the cochlear filterbank channels and n
denotes the discrete time. The envelope e; ,[n] of a given sig-
nal z;[n] is computed by the “Env. Extraction” block in Fig. 1
as the magnitude of the analytic signal z¢[n] = z;[n]+jz}[n],
where z]'[n] is the Hilbert transform of x;[n]. The envelopes
of the filter bank outputs are of much lower frequencies than
the input signal itself and are therefore downsampled by a
factor of 10 (Fig. 1). It is not necessary to use lowpass filters
before downsampling for the signals used in section III. The
downsampled envelope e; 4[n] is computed from e; ;, [n] by the

following equation:

N, —1
10
where N, is the length of the signal x[n] and the function
“floor” returns the integer part of a number. The envelope
er,q[n] is then compressed with the square root function. This
is inspired by the compression applied by the outer hair cells in
the auditory system [40]. The downsampled and compressed
envelopes ¢;[n] are fed to the lateral inhibition and roughness

extraction modules for further processing (Fig. 1).

ENE)

erdn] = e p[10n]; n=0,1, ..., floor(

B. Lateral Inhibition

Lateral inhibition, which exists in all sensory systems, is
the capacity of an excited cell to reduce the activity of nearby
cells to boost the contrast of their activities and sharpen their
bandwidths [41, 42]. Lateral inhibition in the auditory system
leads to sharper peaks in the spectrum and enhanced spectral
resolution. In our model, it is implemented as follows:

efln] = ein] — crp—rei—1[n] — cipprersin] - @)

where e;_1[n], e;[n], and e;;1[n] are the downsampled and
compressed envelopes of filters [ — 1, [, and [+ 1, respectively,

eF![n] is the lateral inhibited envelope of channel I, and

coefficient c for filters [ and j is computed by:

<|F|,|F;| >5=1-1,1+1 (5)

’
C; -
_ l,j
Gj = o T (6)
1,1—1 1,041

/ _
G =

where F; and [} are the frequency responses of filters [
and j of the cochlear filter bank, and < |EF}|, |F;| > is the
inner product of |Fj| and |F;|. In this implementation, only
correlations with the two neighboring channels were used. As
such, it is a local lateral inhibition model, which requires less
computations and is common in the literature [41]. ¢;0 and
cga,85 were set to zero when lateral inhibition was applied to
channels 1 and 84, respectively. Negative values of elLI [n] are
removed by half-wave rectification:

e{-IW[n] _ € [Tl] +2‘€l [TLH

(7

where e/ [n]
l.

As shown in Fig. 1, the time-averaged spectrum S;, which
is one of the three main profiles extracted for timbre in this

paper, is computed as follows:

is the half-wave rectified envelope of channel

1 X
&=N22$WM ®)

where N is the length of the half-wave rectified envelope
ef™™ [n]. Fig. 2 presents examples of time-averaged spectrum
with and without lateral inhibition for the note F5 (87.31
Hz) of piano. As shown in this figure, lateral inhibition has
enhanced the spectral resolution by separating the unresolved
harmonics of this signal.
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Fig. 2. Effect of lateral inhibition (L.I.) on the time-averaged spectrum: the
time-averaged spectrum obtained for note F> (87.31 Hz) of piano without
lateral inhibition (top) and with lateral inhibition (bottom). The unresolved
harmonics in the top panel were resolved after lateral inhibition. Both graphs
were normalized by their maximum values for display purposes.

C. Roughness Extraction Module

Roughness is a sensation caused by fast (30 Hz to 200 Hz)
amplitude modulations of a sound [43, 44]. To estimate the
roughness of a sound, we first estimate the roughness for all
the channels of the cochlear filter bank separately and then
add them together. In this subsection, we first present the
factors influencing roughness perception, and then explain how
roughness is computed for channel [ and the whole signal from
these factors.

1) Roughness determinants: The factors that influence the
roughness perception are referred to as roughness determinants
in this paper. Some of the known roughness determinants are
introduced in this section. The perceived roughness of the pure
AM tone

z[n] = (d + asin(27 f,,,nTy))sin(2m fonTy)

depends on the carrier frequency f., the modulation frequency
fm, and the modulation depth m = a/d [43, 44]. In general,
when f. = 1000 Hz and f,, = 70 Hz, any increase in m
from O to 1.2 leads to the increase of roughness but after
1.2 it decreases. When m = 1 and f,, = 70 Hz, roughness
is maximum at f. = 1000 Hz and decreases for carrier
frequencies lower or higher than 1000 Hz. When m = 1 and
fe = 1000 Hz, roughness is maximum at f,, = 70 Hz and
decreases for modulation frequencies lower or higher than 70
Hz.

The above factors are not the only factors involved in
roughness perception. In subjective experiments conducted in
[35], it was observed that roughness perception depends on the
shape of the amplitude fluctuations of a signal. Moreover, in
[32], Duisters reported that although signals that have noise-
like characteristics create large modulation depths, they are not
perceived as rough. He thus proposed to decorrelate the filter
bank outputs to overcome this problem. As explained below,
the roughness module proposed in this paper accounts for all
the aforementioned effects.

Though roughness typically depends on AMs from 30 Hz
to 200 Hz, in this study, amplitude modulations from 30 Hz
to 930 Hz are used to compute roughness because 1) AMs
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with frequencies up to 1000 Hz are still perceptible [45] and
2) for speech and sounds of some musical instruments, AM
modulations are caused by pitch which is an important percep-
tual feature independent of timbre. Therefore, we decided to
use a broader range of AM frequencies to be able to use high
frequency AMs in future studies. In addition, the energy of the
amplitude modulations from 10 Hz to 30 Hz is computed and
used as a distinct feature. Also, amplitude modulations with
frequencies less than 10 Hz are used to estimate the global
temporal envelope of a sound. These specific choices of AM
bands for the computation of the global temporal envelope, the
energy of AMs from 10 Hz to 30 Hz, and roughness is due
to the fact that amplitude modulations with f,, < 10 Hz are
perceived as distinct events, AMs with frequencies between 10
Hz and 30 Hz are heard as acoustical flutter, and AMs with
frequencies above 30 Hz fuse together and generate roughness
[46]. The relevant details are presented below.

2) Roughness estimation in channel I: The process of
roughness estimation for channel / of the cochlear filter bank is
shown in Fig. 3. The downsampled and compressed envelope
ei[n] is processed by a modulation filter bank that is also
based on the ERBlet transform. The modulation filter bank
comprises 15 filters which cover frequencies up to 930 Hz (1
filter per ERB from ERDB,,,,, 0 to 14). This is in agreement
with other studies. For instance, in [32], 9 modulation filters
were used. The low-pass filter (AM LPF in Fig. 3) gives the
lowest frequency component of the input (less than 10 Hz), the
second filter (AM BPF 1 in Fig. 3) covers frequencies from
10 to 30 Hz, and the rest of the filters (AM BPF 2 to AM BPF
14 in Fig. 3) give the higher frequency amplitude modulations
(30 Hz to 930 Hz). The output of the second filter (AM BPF
1) is used to compute the energy of AMs in band [10 Hz, 30
Hz] and the outputs of the first filter (AM LPF) as well as
those from 3 to 15 (AM BPF 2 to AM BPF 14 in Fig. 3) are
used to compute the roughness.

From psychoacoustic experiments, roughness is known to
be proportional to m™, where m is the modulation depth
and n varies from 1.4 to 2 depending on the experimental
setup [43, 44]. The 2" power of m [32, 33] is usually
selected in roughness models and m is then multiplied by the
roughness determinants mentioned in section II-C1. Therefore,
the above proportionality for the instantaneous roughness r;[n]
of channel | can be expressed as follows:

r[n] o (%1,1 ‘;"W,lJrl

where m;[n] is the instantaneous modulation depth in channel
l, H and G are the weights of modulation and carrier frequen-
cies respectively, (; is a factor for loudness normalization, W
is the effect of waveform envelope shape, and ;1 ; and ; ;11
are the correlations of the output f;[n] (Fig. 3) of channel
[ with the respective outputs of channels [ — 1 and [ + 1,
and the factor (y;—1,; 4+ i,1+1)/2 [32, 33], which is explained
in subsection II-C5, is used to decorrelate channel [ with its
neighbors.

There are two differences between our model and the
previous ones: 1) we compute an instantaneous function rather
than a single measure for roughness as it varies with time and

2
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Fig. 3. Roughness estimation in channel [ of the cochlear filter bank: the
envelope e;[n] from Fig. 1 is analyzed by a modulation filter bank consisting
of the filters AM LPF, AM BPF 1, AM BPF 2, ..., and AM BPF 14. The
output of AM BPF 1 is used to compute the energy of AMs from 10 Hz
to 30 Hz. Other outputs are involved in the estimation of modulation depth.
The modulation depth is multiplied by the effects of modulation frequency
(Hp,), carrier frequency (G)), envelope shape (W), loudness (Q);), and the
average of the correlations (y;—1,1 and 7;,141) with neighboring channels.
The components d;[n] are also used to estimate the global temporal envelope.

2) roughness estimation is integrated into a timbre model for
the first time in this paper.

In the following subsections, the factors my[n], Wi, Q,
Yi—1,1, and ;41 are computed and the functions H and G
are introduced.

3) Modulation depth estimation: For the sake of clar-
ity of presentation, first we consider the case where the
downsampled and compressed envelope of the channel [ is
eiln] = d; + a;sin(2n f,nT.), with T, being the sampling
period after decimation by 10. To estimate the modulation
depth, parameters a; and d; first need to be estimated. The
output of the first filter AM LPF in Fig. 3 gives d; (the low
frequency component). The AC component a;sin(27 fmnTSl)
of e;[n] is given by one of the other filters depending on
the value of f,,. The envelope of the AC component a; is
computed by the “Env. Extraction” block in Fig. 3. Since only
one of the filters from AM BPF 2 to AM BPF 14 is active,
a; is given by a;[n] in Fig. 3. The modulation depth m; is
simply the ratio of a; to dj.

In practice, the parameters a; and d; may change with time.
Thus we now consider the following general form for ¢;[n]:

ei[n] = di[n] + Fi[n] (10)

where d;[n] is assumed to have low frequency components

Fig. 4. Effects of carrier and modulation frequencies on roughness: G is
the weight of the center (carrier) frequency F. of channel [ in the cochlear
filter bank and Hy, is the weight of the modulation frequency Fj, (the center
frequency of channel & in the modulation filter bank). GG; and Hj, have their
maxima at F,. = 1000 Hz and F,, = 70 Hz, respectively, as discussed in
section ITI-C1. Similar functions have been used in other studies (see [32] for
a summary).

(< 10 Hz) whereas Fj[n] is assumed to have higher frequency
components. d;[n] is still obtained by the low-pass channel
of the modulation filter bank, but the AC component Fj[n] is
decomposed into its narrow-band components f; 1[n], fi2[n],

and fiaa[n], where fix[n] ~ ax[n]sin(27 frnT,), and
k indicates the channels of the modulation filter bank. The
amplitude a; x[n] is computed by the “Env. Extraction” block
in Fig. 3. An estimate for the envelope a;[n] of the AC
component Fj[n] can now be computed by:

(1)

The modulation depth, which is now a function of time, is
found by my[n] = a;[n]/di[n]. When d;[n] is zero or very
small (when there is no or little activity in channel [), m;[n]
can become very large which is not accurate. To circumvent
this problem, the numerator and denominator of the fraction
above are first divided by dj 4z, the maximum of d;[n], and
then my[n] is written as:

m [n] _ aj [n]/dl,max
di[n]/di max + h(di[n]/dimaz)

where the function h(y) is chosen such that when y is large
enough, h(y) ~ 0 and when y is zero or very small, h(y)
is large. In this research, the following function was chosen
empirically:

12)

h(y) = e 4%, (13)

4) Effects of modulation and carrier frequencies on rough-
ness in channel I: Channel k£ of the modulation filter bank
covers a specific range of amplitude modulation frequencies.
Hy, (Fig. 4) represents the weights of these modulation fre-
quencies on roughness computations in channel [, as discussed
in section II-C1. Hj is maximum at 70 Hz. Such weighting
functions have been used in other studies and are reviewed
in [32]. In (9), m;[n] needs to be computed separately and
then multiplied by the other factors. However, in Fig. 3, the
output f; ;[n] of the modulation filter bank is multiplied by
the weighting function Hj, before computing m,[n]. In other
words, it is no longer necessary to include H as a separate
factor in (9) as the effect of the modulation frequency is
implicitly applied before computing my[n]. The weighting
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function G, i.e. the effect of center (carrier) frequency of
channel [ on roughness is also depicted in Fig. 4. This effect
is maximum at 1000 Hz as mentioned in section II-C1. The
functions (G; and Hj, simulate those used in other studies for
the same purposes (see [32] for a summary).

5) Decorrelating channel | with its neighbors: As men-
tioned in subsection II-CI1, signals with noise-like charac-
teristics cause large modulation depths, but they are not
perceived as rough [32, 33]. The neighboring channels of the
cochlear filter bank have low correlations in such cases. Thus,
correlation factors can be used to correct the high modulation
depths. Correlation factors are defined as follows:

corr(fi—1[n], fi[n])
corr( fi[n], fiy1[n])

where the operator corr returns the Pearson correlation coeffi-
cient and f;[n] = 3", fix[n] (Fig. 3). As shown in (9), the
average of v;,_1; and <, ;41 is used as a roughness factor.

6) The effect of envelope shape on roughness in channel I:
In [35], it was shown that roughness perception was affected
by the shape of amplitude fluctuations of a signal. Sounds
with reversed sawtooth envelopes were perceived as having
greater roughness than those with sawtooth envelopes (Fig. 8).
To account for this effect, a shape factor is introduced in the
model. The shape factor is computed from the AC component
of the envelope, fi[n]. For that purpose, the discrete-time
derivative fi[n] = fi[n + 1] — fi[n] is first computed. The
shape factor is then defined by:

(14)
15)

V-1,
V141

—5(%£-05)

Wy=e (16)

where N is the length of fi[n] and T is the number of
samples for which f;[n] > 0. When the overall rise time
of envelope fluctuations is less than the overall decay time
(reversed sawtooth), then % > 0.5 and the shape factor W; has
a value greater than 1. Otherwise, it is less than 1 (sawtooth).

7) Loudness normalization: To normalize the effect of
loudness on roughness, the modulation depth is multiplied by
factor Q;, which was computed using the following equations:

1.,
Nzez[n]

€rms,l
n=1
€rms,l
Q = —— (17)
max|€yms 1

where e;[n] is the downsampled and compressed envelope of
channel [ (Fig. 1) and e, is a measure for the loudness of
channel I.

8) Instantaneous and effective roughness estimation: In-
stantaneous roughness can now be estimated based on (9):

2
—1,+
. (W.Gl.Ql-Wl -mz[n]> (18)

rin] = 5
84

Rln] = Y nn (19)
=1

Repy = (20)
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Fig. 5. Global temporal envelope and instantaneous roughness estimation:
(a) Original signal. (b) The instantaneous roughness which encodes the local
fluctuations of the signal envelope. (c) The estimated global envelope of the
signal, which encodes the global evolution of the signal envelope. It has a
lower scale than the exact envelope due to the compressions applied in Fig.
1 and removal of the AM modulations in Fig. 3.

where r;[n] is the instantaneous roughness of channel I, and
R[n] and Ry are the instantaneous and effective roughness
of the whole signal, respectively. m;[n] involves the effect
of modulation frequency Hy, as stated in section II-C4. The
constant 1 in (18) is computed as follows. Asper, the unit of
roughness, is defined as the roughness of a pure AM tone
with f. = 1000 Hz, f,, = 70 Hz, m = 1 and a loudness
of 60 dB SPL [43]. Therefore, we first computed the effective
roughness IR,y of the above AM tone without considering the
constant 7 in (18). The value n = 1/R,.; guarantees that the
effective roughness of the above AM tone becomes 1 Asper.
n was found to be 1.38 for the proposed model. This value
of n is used to compute the roughness of input sounds. An
example of instantaneous roughness is shown in Fig. 5(b).

D. Global Temporal Envelope

It is necessary to estimate the global temporal envelope of
a signal because an important set of timbral features depends
on it. In this paper, the global temporal envelope e[n] of the
signal is defined as:

2n

where the low frequency components d;[n] is estimated by
the modulation filter bank in Fig. 3. In the estimation of e[n],
the temporal fine structure is removed by the cochlear filter
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bank, the envelopes of the filter outputs are compressed, and
the AM modulations are removed by the modulation filter
bank. Consequently, it has a lower magnitude than the exact
envelope of the signal as shown in Fig. 5(c). Apart from being
scaled down, e[n| accurately estimates the shape of the global
temporal envelope.

In summary, three major profiles are extracted for timbre
using the proposed model: the Time-Averaged Spectrum found
by (8), the Instantaneous Roughness found by (18), and the
Global Temporal Envelope found by (21). In addition, most of
the timbral features presented in section I-A can be computed
from these profiles. In the next section, the proposed model is
evaluated in three applications.

III. APPLICATIONS

Since one of the goals of this study was to construct a
flexible and multipurpose framework for timbre analysis, the
proposed model was tested in three different applications: 1)
comparison with subjective values of roughness, 2) musical
instrument classification, and 3) feature selection for labeled
timbres.

A. Comparison with Subjective Values of Roughness

In this section, the effective roughness evaluated by the
proposed model is compared to subjective values of rough-
ness. The subjective values that are used for that purpose
were obtained from [35], in which Pressnitzer and McAdams
conducted two subjective experiments to study the effects
of carrier phase and waveform envelope shape on roughness
perception. The same sounds were applied to our model and
it was expected that the model would simulate the subjective
roughness data from the above experiments. Both cases are
presented below.

1) Effect of carrier phase on roughness perception: The
synthetic sounds used in the first experiment of [35] were
pseudo-AM (pAM) signals of the following form:

pAM|n] = %cos(%r(fC = fm)nTy)
+ cos(2m fonTs + )
+ % cos (27 (fe + fm)nTs)

(22)

where the sampling period T was 1/44100 seconds. Seven
sets of sounds were used in the experiment, each set consisting
of 7 pAM tones which had the same carrier and modulation
frequencies, but with 7 distinct values for ¢: —7/2, —7/3,
—r/6, 0, 7/6, /3, /2. The pairs of carrier and modulation
frequencies for these 7 sets were: (f.,fmn) = (125, 30), (250,
40), (500, 50), (1000, 70), (2000, 70), (4000, 70) and (8000,
70), where all frequencies are in Hz. Some of these signals
are shown in Fig. 6. The amplitude fluctuation of these sounds
decreases with the absolute value of phase ¢. Each sound was
one second in duration and had raised-cosine onset and offset
ramps of 50 ms. All sounds were presented to the subjects at
60 dB SPL.

Two groups of 15 subjects [35] took part in the experiment.
They were first familiarized with the notion of roughness. To
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2
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g
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t(sec) 1(sec)
0.05 D=-1/3 D =+1/3
0.025
3
ER
£.0.025
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Fig. 6. Examples of the pseudo AM tones that were used to estimate
the impact of carrier phase ¢ on roughness. The amplitude of envelope
fluctuations decreases with |¢|.

that end, tones with known carrier and modulation frequencies
were presented to the participants. Participants could vary
the modulation depth and observe roughness variations. After
the training phase and a few practice trials, all sound pairs
from a given stimulus set were presented to the subjects, and
they were asked to compare the relative roughness of these
sounds. Binary paired-comparison judgments were analyzed to
find a psychophysical scale for roughness. The results showed
that the absolute value of phase |¢| had a strong influence
on roughness perception. In general, perceived roughness
increased with the decrease of |¢|. In other words, phases that
caused larger amplitude modulations were perceived as having
greater roughness. In addition, the sign of ¢ affected roughness
perception, with positive phases causing higher roughness. For
instance, a signal with phase 7/6 was rougher than a signal
with phase —7/6, assuming that they had the same carrier
and modulation frequencies. This effect was observed for all
values of f. and ¢ except f. = 8 kHz or ¢ = +7/2.

The same sounds were presented to the proposed model to
estimate the effective roughness. Results are summarized in
Fig. 7. As expected, no effect of phase sign was observed
due to the fact that the model performs no carrier phase
processing. In Fig. 7, estimated effective roughness curves
for negative- and positive-phase signals are superimposed and
look like a single curve. To quantitatively measure the degree
of similarity between the estimated roughness curves in Fig. 7
and the equivalent subjective curves from [35], we computed
the Pearson correlation coefficient for any given pair of (fe,
fm)- The correlation coefficients are presented in Table 1. As
seen in this table, the subjective roughness values and the
values estimated by the model are highly correlated. Therefore,
as in [35], roughness decreases with the absolute value of
phase ¢.

It is not possible to compare the perceived roughness of
tones with different carrier and modulation frequencies (fe,
fm), e.g. (250 Hz, 40 Hz) and (1000 Hz, 70 Hz), because the
roughness scales obtained in [35] are relative and normalized.
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Fig. 7. The estimated effective roughness for the pseudo AM tones: dashed
and solid lines show the effective roughness for negative and positive phases,
respectively. They are superimposed and look like a single line in most figures
because the model did not process phase information. In general, effective
roughness decreased with the absolute value of phase ¢.

TABLE I
CORRELATION COEFFICIENTS BETWEEN THE SUBJECTIVE ROUGHNESS
FROM [35] AND THE OBJECTIVE ROUGHNESS FROM THE PROPOSED

MODEL. THESE COEFFICIENTS WERE COMPUTED FOR THE pAM SIGNALS
WITH CARRIER AND MODULATION FREQUENCIES (f¢, fm) = 1: (125, 30),

2: (250, 40), 3: (500, 50), 4: (1000, 70), 5: (2000, 70), 6: (4000, 70)
AND 7: (8000, 70). SUBJECTIVE AND ESTIMATED OBJECTIVE VALUES ARE

HIGHLY CORRELATED.

Carrier and modulation frequencies pairs
I T 2 1 3 1 41571617
¢<0 | 091 | 096 | 0.87 | 0.95 1 095 | 092
$>0 | 0.88 | 095 | 094 | 097 | 0.89 | 0.87 | 0.90

Therefore, the subjective roughness values cannot be compared
with the values estimated by the proposed model at different
(fe> fm)- However, for the case where ¢ = 0, the roughness
values estimated by the model are completely in accordance
with the facts presented in section II-C1. As seen in Fig. 6,
when ¢ = 0, roughness is maximum for (f., f,,) =(1000 Hz,
70 Hz) and gradually decreases for (2000 Hz, 70 Hz), (4000
Hz, 70 Hz), and (8000 Hz, 70 Hz). Similarly, it decreases for
(500 Hz, 50 Hz), (250 Hz, 40 Hz), and (125 Hz, 30 Hz).

2) Effect of waveform envelope shape on roughness per-
ception: In the second experiment, Pressnitzer and McAdams
[35] investigated the impact of envelope shape on roughness
perception. They used two classes of stimuli: sounds with
sawtooth amplitude modulations (envelope fluctuations had
slow rises but fast decays) and sounds with reversed sawtooth
amplitude modulations (envelope fluctuations had fast rises but
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Fig. 8. Examples of sounds with sawtooth (left) and reversed sawtooth
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Fig. 9. Effect of waveform envelope shape on the roughness, estimated by the
model: sounds with reversed sawtooth envelopes have greater roughness than
those with sawtooth envelopes. Effective roughness of both types of sounds
increased with the modulation depth. fy,, is 70 Hz in all figures.

slow decays). Signals were generated as follows:

I
Eln] = Z%cos(%rifmnTs—i—qﬁ) (23)
i=1
B mE[n)]
x[n] = (1 m cos(2mfonTs + &) (24)

where I was chosen such that If,, < %ERB( fc). The
function ERB is given by (1). The length N, the sampling
period T, and the loudness of the sounds are the same as those
used in experiment 1. For sawtooth and reversed-sawtooth
signals, the phase ¢ was —m/2 and 7/2, respectively. Two
examples of these signals are plotted in Fig. 8. Modulation
frequency f,,, was 70 Hz for all the sounds and three dif-
ferent carrier frequencies f. were used: 2500 Hz, 5000 Hz,
and 10000 Hz. For each f., three modulation depths were
considered: m = 0.4, 0.6, and 0.8. Ten subjects participated in
the experiment and for each f. they listened to all signal pairs
and judged their relative roughness. Data analysis was similar
to experiment 1. Results showed that roughness increased
with modulation depth and sounds with reversed-sawtooth
envelopes were rougher than those with sawtooth envelopes.

The same sounds were presented to our model to investigate
the effect of envelope shape on roughness estimation. Results
are presented in Fig. 9 and are consistent with the subjective
results of the second experiment in [35]. Effective roughness
increased with modulation depth at all carrier frequencies,
with reversed sawtooth sounds having greater roughness. As in
the previous subsection, we computed the Pearson correlation
to measure the degree of similarity between the subjective
roughness values and the roughness values estimated by the
model for the sounds with sawtooth and reversed sawtooth
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TABLE II
CORRELATION COEFFICIENTS BETWEEN THE SUBJECTIVE ROUGHNESS
FROM [35] AND THE OBJECTIVE ROUGHNESS FROM THE PROPOSED
MODEL FOR THE SAWTOOTH AND REVERSED SAWTOOTH TONES USED IN
SECTION III-A2. THE MODULATION FREQUENCY OF ALL TONES IS
fm = 70 HZ. THE SUBJECTIVE AND OBJECTIVE VALUES ARE HIGHLY
CORRELATED.

Carrier frequency
2500 Hz [ 5000 Hz [ 10000 Hz
Sawtooth 1 0.99 1
Reversed sawtooth 0.91 0.94 0.92

envelopes. The correlation coefficients are presented in Table
II. As seen in this table, the roughness values estimated by
the model are highly correlated with the subjective roughness
values in [35].

In summary, our model was able to simulate the subjective
effects of the absolute value of the carrier phase and the
envelope shape on roughness. The next subsection introduces
its use for musical instrument classification.

B. Musical Instrument Classification

In this section, acoustic features and their use for clas-
sification are detailed and results are presented. Burred et
al. [26] proposed an interesting model for timbre analysis
where timbre was considered as the spectrotemporal envelopes
estimated by sinusoidal modeling. Our bio-inspired hierar-
chical model extracts similar spectrotemporal characteristics
and encodes them into time-averaged spectrum and global
temporal envelope. We therefore would like to compare our
model with the one proposed in [26].

1) Feature extraction and the sounds used in [26]: The
timbral features that were used in [26] consisted of the
ensemble of partials (spectral peaks) that were extracted using
sinusoidal modeling and peak finding in overlapping windows.
Principal component analysis (PCA) was applied to the ex-
tracted features for the sake of dimensionality reduction, where
the 20 principal components that had the largest variances
were selected. In the obtained twenty-dimensional space, each
instrument was represented by a prototype conveying the
evolution of its timbre. The prototypes were composed of
20R, 4, features, where R,,,., the length of the longest
partial trajectory, was not reported. A very conservative es-
timate that we computed for R,,,, is 50, taking into account
the windowing strategy that was used in [26]. Therefore, the
number of features might be at least 1000. Classification was
performed by comparing the signal with the 5 prototypes in
the obtained PCA space.

All the signals that were used in [26] were selected from the
RWC musical instrument sound database [47]. They consisted
of all the notes from Cy to Bjs (covering two consecutive
octaves) from 5 instruments: oboe, clarinet, trumpet, piano,
and violin. Recordings from 2 to 3 examples of each instru-
ment with 3 dynamics (piano, mezzo-forte, forte) and normal
playing style were used which amounted to 1098 individual
notes. The sampling frequency was 44100 Hz.

2) Feature extraction using the proposed model: Our model
was tested in a musical classification task using the above

signals. The features used were the time-averaged spectrum
and the global temporal envelope presented in sections II-B
and II-D. Roughness was not used as we wished to evalu-
ate the system’s capacity in encoding only the spectral and
temporal characteristics of timbre in this task. The following
dimensionality reduction strategies were applied to simplify
signal representations:

e every two neighboring channels of the time-averaged
spectrum were averaged, reducing the number of spectral
features from 84 to 42. Forty-two spectral features were
sufficient to encode the spectral characteristics of the sig-
nals used in this section. However, in other applications,
all 84 spectral features may be used.

o 40 features were extracted from the onset of the global
temporal envelope e[n].

o 20 features were extracted from the offset of the global
temporal envelope.

To compute the onset and offset features, the global temporal
envelope was first divided into 60-ms non-overlapping win-
dows. For any given window, a single temporal feature was
then computed by averaging the global temporal envelope over
the duration of that window. The first 40 temporal features
(referred to as onset features) and the last 20 temporal features
(referred to as offset features) of a sound were only used in this
application, resulting in a total of 60 temporal features. Given
the 60 temporal features and that each window was 60 ms, the
minimum duration of the sound is 3.6 seconds (60 windows
x 60 ms). However, some of the signals used in this study
had shorter durations. To overcome this problem, the global
temporal envelope was divided into three equal segments,
roughly relating to attack and decay, sustain, and release
segments of the envelope. Samples were added to the middle
segment (sustain) by interpolating between the points using a
cubic spline function. In other words, if the duration of a signal
was 3.3 seconds (300 ms less than the minimum duration of
3.6 sec), the sustain segment of the global temporal envelope
was augmented by interpolation to increase the length of
the signal to 3.6 sec. In [26], the temporal trajectory of a
given spectral peak was uniformly interpolated. This had an
adverse effect on some of the signal representations, because
the attack and decay, which are known to be important features
of timbre, were stretched. As stated above, this adverse effect
was avoided in this work by interpolating only the sustain
segment, leaving the other 2 segments intact. In summary, a
given signal is represented by 102 features: 42 spectral, 40
onset, and 20 offset features.

3) Classification methods used in this study: Classification
methods that have previously been employed for instrument
classification include hidden Markov models (HMM) [48],
Gaussian mixture models (GMM) [49], support vector ma-
chines (SVM) [50], the k-nearest neighbors (k-NN) algorithm,
[50, 51], Bayesian networks [50], and artificial neural networks
(ANN) [52].

In this research, the k-NN algorithm and a Bayesian network
were used. k-NN finds the k nearest neighbors of a given
sound in the training set and assigns it to the class that includes
the majority of these k neighbors. To that end, it requires a
distance measure between sounds. An Euclidean distance was
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used where spectral, onset and offset features were weighted
differently. The optimal weights and parameter k that gave rise
to the minimum classification error were found as follows: the
spectral features’ weight, w,, was fixed at 1, the onset and
offset features’ weights, w,, and weyrr, were varied from 0
to 6 with steps of 0.1, and all odd numbers from 1 to 9 were
tested for k. The optimal values k = 1, wo, = 1, and wopy =
1.4 were obtained by minimizing the average classification
error for the signals introduced in section III-BI1, after 100
runs of 10-fold random cross-validation. This minimization
was performed for the 10 training folds altogether.

The Bayesian network that was used as the second classi-
fier is illustrated in Fig. 10. Each circle represents a single
feature which is considered a random variable. The sets
S ={S;,i=12..,42}, A = {A;, i = 1,2,...,40}, and
D ={D;, i =1,2,...,20} are the spectral, onset, and offset
features, respectively. The three sets of features are assumed
to be conditionally independent of each other for a given
instrument but there are first order Markovian dependencies
between features within any given set. For instance, for
spectral features, Sy depends on Sy1, S41 depends on Sy and
so on. The variable C represents the class (or the instrument)
of a signal. The joint distribution of all the variables can be
factored as follows:

42
P(S,A,D,C) = P(C) - P(%C) - [] P(SilSi-1,C):
i=2
40
P(A4[C) - [ P(AilAi-1, ©)-
i=2
20
P(D4|C) - HP(Di|Di—17C)'

=2

(25)

Individual features (spectral, offset, and onset) were modeled
as Gaussian random variables and C' was assumed to have
a polynomial distribution. These choices were motivated by
the empirical histograms of the variables. The unknown pa-
rameters of the distributions were estimated using maximum
likelihood (ML) optimization. The classification of a test signal
with feature sets A, D and S was done by maximizing the
posterior probability:

P(C|S,A,D) x P(S,A,D,C) (26)

where P(S, A, D) is constant for all classes and its reciprocal
is the coefficient of the above proportionality.

Both classifiers (the £-NN and the Bayesian network) were
trained and tested with distinct feature sets (extracted from
the signals presented in section III-B1) and their combinations
using 10-fold random cross-validation.

4) Classification results: Classification results for the 5
instruments are presented in Table III. These are the average
classification results after 100 runs of 10-fold cross-validation.
The results presented in this subsection are of the form pu+ o
where  is the average classification rate for a given instrument
and o is its standard deviation for 100 runs of 10-fold cross-
validation. The average classification accuracy for piano was
100% =+ 0 using both the k-NN and the Bayesian network
(95.81% in [26]). This was expected because piano has both

http://dx.doi.org/10.1109/TASLP.2016.2530405
IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING

S
>
S3

cO

D,

D,

Dy é‘—

| A, |
| A, |
| A, |

A40$4_'

Fig. 10. The Bayesian network used as the second classifier: each circle
represents a feature which was modeled as a random variable. Variable C
represents the class or instrument. Sets S = {S;, i = 1,2,...,42}, A =
{A;, i=1,2,...,40} and D = {D;, i = 1,2, ...,20} include the spectral,
onset and offset features, respectively.
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a fast onset and offset with no sustain, and therefore, both
methods have classified the piano notes correctly. The average
classification accuracy for clarinet was 96.30% =+ 0.81 with
the k-NN and 92.92% =+ 0.51 with the Bayesian network
(92.52% in [26]). On average, oboe was correctly classified
88.20% =+ 1.13 and 91.56% + 0.54 of the time using the
k-NN and the Bayesian network, respectively (95.10% in
[26]). The average classification accuracies of the k-NN and
the Bayesian network for violin were 96.76% =+ 0.71 and
98.88% =+ 0.4, respectively (95.45% in [26]). The average
classification accuracies of the k-NN and the Bayesian net-
work for trumpet were 88.88% =+ 1.03 and 96.33% + 0.51,
respectively (96.53% in [26]). Oboe and trumpet, which had
similar timbres, were confused by the k-NN. The Bayesian
network misclassified clarinet as oboe and violin 4.66% and
2.32% of the time, respectively. It also misclassified oboe as
violin 6.69% of the time. The overall average classification
accuracy was 94.03% +4.69 for the k-NN and 95.94% + 3.65
for the Bayesian network (95.08% in [26]). The k-NN and
the Bayesian network used only 102 features whereas at least
1000 features were used in [26].

To test the importance of different feature sets and their
impact on the overall classification accuracy, both classifiers
were trained on distinct feature sets (spectral, onset and offset)
and their various combinations. The results are presented
in Table IV. The overall average classification accuracy of
both classifiers for spectral and onset features were higher
than offset features. However, when k-NN was trained on
all features, offset features contributed a great deal to the
overall performance (approximately 4%). For the Bayesian
network, offset features had no significant impact on overall
performance when all features were used.

All the connections between features of every feature set
were removed in the Bayesian network to test the effect of de-
pendencies between features on the classification performance.
For instance, in Fig. 10, there were no longer arrows from S
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TABLE 1T
CONFUSION MATRIX FOR THE k-NN, THE BAYESIAN NETWORK (BN),
AND THE MODEL PROPOSED IN [26]. ALL NUMBERS ARE PERCENTAGES.
THE OVERALL AVERAGE CLASSIFICATION ACCURACY IS 94.03% FOR THE
k-NN, 95.94% FOR THE BN, AND 95.08% FOR [26].

Presented | method Detected
piano | clarinet [ oboe | violin [ trumpet
k-NN 100 0.00 0.00 0.00 0.00
piano BN 100 0.00 0.00 0.00 0.00
[26] 95.81 1.40 0.47 0.00 2.33
k-NN 0.00 96.30 0.46 1.85 1.39
clarinet BN 0.02 92.92 4.66 2.32 0.08
[26] 1.40 92.52 5.14 0.93 0.00
k-NN 0.00 6.25 88.20 0.69 4.86
oboe BN 0.00 0.73 91.56 6.69 1.02
[26] 0.00 2.10 95.10 2.10 0.70
k-NN 0.46 0.93 0.46 96.76 1.39
violin BN 0.00 0.43 0.69 98.88 0.00
[26] 1.07 0.53 0.00 95.45 2.94
k-NN 0.00 3.78 5.56 1.78 88.88
trumpet BN 0.00 1.51 0.72 1.44 96.33
[26] 0.00 0.00 0.00 3.47 96.53

TABLE IV

OVERALL AVERAGE CLASSIFICATION ACCURACY OF THE k-NN AND THE
BAYESIAN NETWORK (BN) FOR DISTINCT FEATURE SETS AND THEIR
COMBINATIONS: 1) OFFSET ONLY, 2) ONSET ONLY, 3) SPECTRAL ONLY, 4)
SPECTRAL & OFFSET, 5) ONSET & OFFSET, 6) SPECTRAL & ONSET, 7) ALL

FEATURES.
Feature sets
1 l 2 l 3 l 4 l 5 l 6 l 7
k-NN 71.6 83.19 | 84.35 | 88.52 | 89.72 | 90.05 | 94.03
BN 78.37 | 89.59 | 85.74 | 92.76 | 90.13 | 95.48 | 95.94

to S or from S; to S3, etc. The overall average classification
accuracy decreased from 95.94% to 90.60%. Therefore, this
classifier was more successful in encoding the signal charac-
teristics when the first order Markovian dependencies were
present. This was expected as the time evolution of frequency
components of acoustic signals is structured and not random.

C. Timbral Feature Selection

The model’s potential for timbre representation was tested
in a third application. The idea was to use the model to find
the best features that could distinguish between three timbral
classes consisting of 23 sounds. We used these sounds in
an earlier audio-visual experiment, where 119 subjects were
asked to select a visual shape out of a set of three for each [36].
Results showed that there existed a strong correspondence
between timbre and visual shapes. Accordingly, sounds can
be classified into three groups (timbral classes) based on the
selected visual shapes that represent the perceptual similari-
ties/dissimilarities of the timbres of these sounds. In this study,
we hypothesized that sounds associated with the same visual
shape should share timbral features. The goal was to find a
space of features in which sounds associated with the same
visual shape were nearby. In other words, we wished to find
out which features invoked the selection of a particular shape
for a given sound.

All the 23 sounds used in [36] were 1 second in duration and
were sampled at 44100 Hz. They included notes from piano,
cello, guitar, marimba and saxophone all of which had been

multiplied by a Hanning window with a duration of 1 second
to equalize the onset and offset such that only the spectral
features of timbre were preserved. Therefore, it was more
difficult for the subjects to distinguish between the timbres
of these instruments as their sounds had similar onsets and
offsets. For each instrument, four notes were selected: G
(98 Hz), D3 (146.83 Hz), G35 (196 Hz), and B3 (246.94 Hz).
The other 3 sounds were notes from gong, crash cymbals and
triangle.

Sounds associated with the visual shapes labeled as Sp, So,
and, S3 in [36] are referred to as class 1, class 2, and class
3, respectively. Sounds derived from crash cymbals, gong and
triangle belong to class 1. Class 2 consists of the notes G
(196 Hz) and Bs (246.94 Hz) from cello and guitar, and all
the four notes from saxophone. Class 3 contains the notes Go
(98 Hz) and D3 (146.83 Hz) derived from cello and guitar
and all the four notes from piano and marimba.

To obtain the features that were involved in the selection
of visual shapes for the above 23 sounds, 15 known timbral
features were extracted from the sounds: spectral and temporal
centroids as well as standard deviations, Kurtosises, skew-
nesses and spreads, spectral flatness and flux, log attack time,
effective roughness, and energy of AMs from 10 Hz to 30
Hz. Spectral and temporal features were computed from the
time-averaged spectrum (8) and the global temporal envelope
(21), respectively. All features were normalized to have zero
means and unit standard deviations.

The following procedure was performed for all possible
combinations of the 15 features in N-dimensional spaces,
where N (the number of features) varied from 1 to 5. There
were a total of 4943 feature spaces to examine: 15 1D spaces,
105 2D spaces, 455 3D spaces, 1365 4D spaces, and 3003
5D spaces. We used the k-means algorithm to find three
clusters of sounds in a given feature space. The 3 clusters were
then compared to the 3 timbral classes from the audiovisual
experiment. In general, there are 6 combinations to map the
3 clusters to the 3 known timbral classes. The combination
with the minimum classification error was kept for that feature
space. Classification error was defined as the percentage of
the 23 sounds that were not correctly assigned to their known
timbral classes. In the end, we searched for the space with
the minimum classification error by comparing all the 4943
feature spaces.

The minimum classification error of 4.35% was achieved
for a 2D space whose dimensions were log attack time and
spectral centroid, two important features that had also been
found by other studies [9, 15]. Attack time was computed
as the time required for the global temporal envelope e[n]
to increase from 0.1max[e[n]] to its maximum max[e[n]].
Spectral centroid was defined by:

Zlel SZ-ERBnum(fc,l)
Zf:l Sl

where L is 84, S is the time-averaged spectrum from (8), feqis
the center frequency of the I filter, and the function ERB,,,n
is defined in (2). This definition of spectral centroid is different
from the conventional one that uses a linear frequency scale

SC =

27)
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Fig. 11. The timbre space obtained for the labeled sounds used in the feature

selection task. The log attack time and spectral centroid were found to be the
best descriptors for the three timbral classes. The 3 clusters obtained by the
k-means algorithms for the 3 timbral classes of [36] are shown. The relative
positioning of the three timbral classes in this space is in accordance with the
perceptual associations obtained in [36].

instead of the warped scale ERBy,um (f.,1), and can be consid-
ered as a subjective measure for frequency. The representation
of the sounds in the obtained 2D space is shown in Fig. 11. In
this figure, triangles, squares, and circles represent the sounds
in classes 1, 2, and 3, respectively. The sounds in class 1 had
much faster attack time (because they were not weighted with
a Hanning window) and higher spectral centroid. The sounds
in classes 2 and 3 had similar attack time. This was expected
as they had been multiplied by a Hanning window which had
removed onset differences. Despite the attack time, spectral
centroid distinguishes between the sounds in class 2 and those
in class 3.

We now compare the 2D space in Fig 11 to the results
presented for the grayscale shapes (represented by CMG
confidence measure) in Table 1 of [36]. This comparison
is also valid for the colored shapes (represented by CMC
confidence measure) in the same table. In [36], on average,
for the sounds in class 1, 89% of subjects have selected the
shape S7, whereas only 11% have selected the shape So (the
shape of class 2) or S5 (the shape of class 3) altogether. This
shows that almost all subjects have agreed that the timbres of
class 1 are perceptually very distant from those of class 2 and
3. This is clearly seen in the obtained 2D space in Fig. 11
where there is a large distance between the sounds of class 1
and those of classes 2 and 3. On the other hand, for the sounds
in class 2, on average 60% of the subjects have selected the
shape S5, whereas 24% have selected the shape S3 (the shape
of class 3). Similarly, for the sounds in class 3, on average
66% of the subjects have selected the shape S3 whereas 30%
have selected the shape S5 (the shape of class 2). Thus, there
is a considerable percentage of the subjects who have selected
the shape Sy for class 3 and the shape S3 for class 2. This is
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because of the similarity between some timbres of class 2 and
some timbres of class 3. For instance, as shown in Table 1 of
[36], the notes G5 (98 Hz) and D3 (146.83 Hz) derived from
cello and guitar have been associated with the shape S5 (class
3) whereas the notes G3 (196 Hz) and B3 (246.94 Hz) derived
from the same instruments have been associated with the shape
So (class 2). However, notes of an instrument, regardless of the
pitch difference, have similar timbres. This is the reason why,
even though the k-means algorithm have separated the classes
2 and 3 in Fig. 11, some sounds in class 2 are close to some
sounds in class 3. Therefore, the 2D timbre space in Fig. 11
is completely in accordance with the perceptual timbre-shape
associations found in [36].

IV. DISCUSSION AND FUTURE WORK

We designed a novel bio-inspired hierarchical timbre model
that 1) is able to extract all the important timbral features
hierarchically (as biological systems do) rather than extract
them using separate parallel subsystems and 2) can be used in
various applications rather than a specific application.

We used the proposed model in three different applications
to verify its potential to capture different aspects of timbre.
In the first application, the proposed model was able to
simulate the subjective values of roughness. Though roughness
is usually considered to be a single quantity, one of the
novelties of the proposed model is that it extracts an instan-
taneous roughness function because amplitude modulations
(and consequently roughness) vary with time. The objective
roughness values estimated by the proposed model were highly
correlated with the subjective values in [35]. Therefore, the
proposed model effectively encoded amplitude modulations
and successfully simulated their perceptual characteristics.

Roughness is an important feature that contributes to the
richness of timbre, however there are other important features
that convey very important information about timbres of
instruments: spectral features such as harmonic structure and
resonances, and temporal features such as attack and decay.
In the second application, the proposed model proved highly
efficient in capturing and encoding spectral and temporal
features for the purpose of instrument classification. Though
our classification results were comparable to those in [26],
our model provided much lower dimensional representations
for timbre. The presented results were achieved using only 102
features while in [26] at least 1000 features were used. The
performance of the system is comparable to the state-of-the-art
methods of instrument classification. However, other systems
may achieve higher rates under different circumstances. For
instance, the bio-inspired model in [31] achieved a classi-
fication rate of 98.7% though at a higher cost (and using
different classifiers and a different dataset). In [31], the system
included 30976 filters (128 x 22 x 11) and provided 242
dimensional feature spaces for signals whereas the proposed
model included only 1260 filters (84 x 15) and extracted 102
features for the signals used in section III.

In the third application, the goal was to find a timbre space
that best characterizes three timbral classes. Though it would
have been possible to compute features using linear methods
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such as the Fourier transform, the features that we used were
extracted by the proposed model, which simulates nonlineari-
ties of the auditory system e.g. nonuniform spectral resolution
and compression. Attack time and spectral centroid proved to
be the best features for this application. The representation
of the three timbral classes in the obtained timbre space
(constructed by these 2 features) is in complete agreement
with the perceptual timbral qualities obtained in [36]. This is
also consistent with other studies, where spectral centroid and
attack time were shown to be the two main timbre dimensions,
though using different settings.

The proposed model currently does not account for the
effect of the sign of carrier phase on roughness. More evidence
on this effect is required to incorporate a phase processing
module into the system. Another important characteristic of
timbre that is not encoded by the system is vibrato. Though, in
general, the leakage of energy between the adjacent channels
can be used to estimate vibrato, further investigation is re-
quired to appropriately quantify vibrato. In addition, since we
have only modeled timbre in this work, it would be of interest
to integrate mechanisms for pitch and loudness perception into
the proposed system to fully represent acoustic signals.

In future studies, the model will be evaluated in other
contexts, such as speech and music separation, music genre
classification, and speech recognition using larger and more
varied databases. In order to use the model in the context
of auditory scene analysis (e.g. cocktail party problem and
instrument recognition in polyphonic music), more modules
such as sequential or parallel grouping based on pitch, and
onset and offset times, should be developed and integrated into
the model. It is also of interest to compare the performance of
the proposed profiles of timbre with the well-known Mel-scale
Cepstral Coefficients (MFCCs) in different applications.

V. CONCLUSION

We presented a multipurpose bio-inspired hierarchical
model that extracts three profiles for timbre: time-averaged
spectrum, global temporal envelope, and instantaneous rough-
ness. The model was tested in three applications. First, it
successfully simulated the subjective roughness data obtained
in [35]. Second, it was used to classify musical instruments,
where the k-NN algorithm and a Bayesian network achieved
classification rates of 94.03 % and 95.94%, respectively, using
only 102 features. Finally, it successfully obtained a timbre
space for three classes of sounds with labeled timbres. Spectral
centroid and log attack time were obtained as the features that
best described the perceptual qualities of the labeled sounds.
Regarding the results of these diverse tests, we have shown that
the proposed model has high potential for encoding spectral,
temporal and spectrotemporal characteristics of timbre and is
applicable in various contexts.
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