655 research outputs found

    Fluctuation induced hopping and spin polaron transport

    Full text link
    We study the motion of free magnetic polarons in a paramagnetic background of fluctuating local moments. The polaron can tunnel only to nearby regions of local moments when these fluctuate into alignment. We propose this fluctuation induced hopping as a new transport mechanism for the spin polaron. We calculate the diffusion constant for fluctuation induced hopping from the rate at which local moments fluctuate into alignment. The electrical resistivity is then obtained via the Einstein relation. We suggest that the proposed transport mechanism is relevant in the high temperature phase of the Mn pyrochlore colossal magneto resistance compounds and Europium hexaboride.Comment: 8 pages, 3 figure

    Genetic Analysis of High Protein Content in ‘AC Proteus’ Related Soybean Populations Using SSR, SNP, DArT and DArTseq Markers

    Get PDF
    Key message: Several AC Proteus derived genomic regions (QTLs, SNPs) have been identified which may prove useful for further development of high yielding high protein cultivars and allele-specific marker developments. High seed protein content is a trait which is typically difficult to introgress into soybean without an accompanying reduction in seed yield. In a previous study, ‘AC Proteus’ was used as a high protein source and was found to produce populations that did not exhibit the typical association between high protein and low yield. Five high x low protein RIL populations and a high x high protein RIL population were evaluated by either quantitative trait locus (QTL) analysis or bulk segregant analyses (BSA) following phenotyping in the field. QTL analysis in one population using SSR, DArT and DArTseq markers found two QTLs for seed protein content on chromosomes 15 and 20. The BSA analyses suggested multiple genomic regions are involved with high protein content across the five populations, including the two previously mentioned QTLs. In an alternative approach to identify high protein genes, pedigree analysis identified SNPs for which the allele associated with high protein was retained in seven high protein descendants of AC Proteus on chromosomes 2, 17 and 18. Aside from the two identified QTLs (five genomic regions in total considering the two with highly elevated test statistic, but below the statistical threshold and the one with epistatic interactions) which were some distance from Meta-QTL regions and which were also supported by our BSA analysis within five populations. These high protein regions may prove useful for further development of high yielding high protein cultivars

    Fragmentation of daily rhythms associates with obesity and cardiorespiratory fitness in adolescents: The HELENA study

    Get PDF
    Background & aims: Chronobiology studies periodic changes in living organisms and it has been proposed as a promising approach to investigate obesity. We analyze the association of the characteristics of the rest-activity rhythms with obesity, cardiorespiratory fitness and metabolic risk in adolescents from nine European countries. Methods: 1044 adolescents (12.5-17.5 y) were studied. Circadian health was evaluated by actigraphy with accelerometers (Actigraph GT1M). Characteristics of the daytime activity such as fragmentation (intradaily variability), estimated acrophase, and 10 h mean daytime activity index were obtained. Body composition was assessed using Bioelectrical-Impedance-Analysis, skinfold thickness, air-displacement-plethysmography and Dual-energy-X-ray-Absorptiometry. Cardiorespiratory fitness (VO2max) and metabolic risk were studied. Results: Highly fragmented activity rhythms were associated with obesity and central adiposity (P < 0.05). Obese adolescents had-3 times higher odds of having a high fragmentation of daytime activity compared to normal weight adolescents OR (95% CI) = 2.8 (1.170, 6.443). A highly fragmented rhythm was also related to lower cardiorespiratory fitness and higher metabolic risk (P < 0.05) so those adolescents classified as low fitness showed a significantly higher fragmentation of daytime activity than those included in the high fitness group (P < 0.0001). Other characteristics of the rhythms such as smaller 10 h daytime mean activity index and delayed estimated acrophase were also related to obesity and metabolic risk (P < 0.05). Conclusions: Our results indicate that the daily organization of the rest-activity cycle is more fragmented in obese and less fit adolescents and correlates with higher metabolic risk. This fact reinforces our hypothesis that disturbances in daily rhythms can be considered as sensitive markers of poorer adolescent's health

    Particlization in hybrid models

    Full text link
    In hybrid models, which combine hydrodynamical and transport approaches to describe different stages of heavy-ion collisions, conversion of fluid to individual particles, particlization, is a non-trivial technical problem. We describe in detail how to find the particlization hypersurface in a 3+1 dimensional model, and how to sample the particle distributions evaluated using the Cooper-Frye procedure to create an ensemble of particles as an initial state for the transport stage. We also discuss the role and magnitude of the negative contributions in the Cooper-Frye procedure.Comment: 18 pages, 28 figures, EPJA: Topical issue on "Relativistic Hydro- and Thermodynamics"; version accepted for publication, typos and error in Eq.(1) corrected, the purpose of sampling and change from UrQMD to fluid clarified, added discussion why attempts to cancel negative contributions of Cooper-Frye are not applicable her

    Phi meson production in Au+Au and p+p collisions at sqrt (s)=200 GeV

    Get PDF
    We report the STAR measurement of Phi meson production in Au+Au and p+p collisions at sqrt (s)=200 GeV. Using the event mixing technique, the Phi spectra and yields are obtained at mid-rapidity for five centrality bins in Au+Au collisions and for non-singly-diffractive p+p collisions. It is found that the Phi transverse momentum distributions from Au+Au collisions are better fitted with a single-exponential while the p+p spectrum is better described by a double-exponential distribution. The measured nuclear modification factors indicate that Phi production in central Au+Au collisions is suppressed relative to peripheral collisions when scaled by the number of binary collisions. The systematics of versus centrality and the constant Phi/K- ratio versus beam species, centrality, and collision energy rule out kaon coalescence as the dominant mechanism for Phi production.Comment: 6 pages, 3 figures, submitted to Phys. Rev. Let

    Plasma Wakefield Acceleration with a Modulated Proton Bunch

    Get PDF
    The plasma wakefield amplitudes which could be achieved via the modulation of a long proton bunch are investigated. We find that in the limit of long bunches compared to the plasma wavelength, the strength of the accelerating fields is directly proportional to the number of particles in the drive bunch and inversely proportional to the square of the transverse bunch size. The scaling laws were tested and verified in detailed simulations using parameters of existing proton accelerators, and large electric fields were achieved, reaching 1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found in this case.Comment: 9 pages, 7 figure

    The energy dependence of ptp_t angular correlations inferred from mean-ptp_{t} fluctuation scale dependence in heavy ion collisions at the SPS and RHIC

    Get PDF
    We present the first study of the energy dependence of ptp_t angular correlations inferred from event-wise mean transverse momentum fluctuations in heavy ion collisions. We compare our large-acceptance measurements at CM energies $\sqrt{s_{NN}} =$ 19.6, 62.4, 130 and 200 GeV to SPS measurements at 12.3 and 17.3 GeV. $p_t$ angular correlation structure suggests that the principal source of $p_t$ correlations and fluctuations is minijets (minimum-bias parton fragments). We observe a dramatic increase in correlations and fluctuations from SPS to RHIC energies, increasing linearly with $\ln \sqrt{s_{NN}}$ from the onset of observable jet-related fluctuations near 10 GeV.Comment: 10 pages, 4 figure

    Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV

    Full text link
    We present the first measurement of directed flow (v1v_1) at RHIC. v1v_1 is found to be consistent with zero at pseudorapidities η\eta from -1.2 to 1.2, then rises to the level of a couple of percent over the range 2.4<∣η∣<42.4 < |\eta| < 4. The latter observation is similar to data from NA49 if the SPS rapidities are shifted by the difference in beam rapidity between RHIC and SPS. Back-to-back jets emitted out-of-plane are found to be suppressed more if compared to those emitted in-plane, which is consistent with {\it jet quenching}. Using the scalar product method, we systematically compared azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure

    Azimuthal anisotropy: the higher harmonics

    Full text link
    We report the first observations of the fourth harmonic (v_4) in the azimuthal distribution of particles at RHIC. The measurement was done taking advantage of the large elliptic flow generated at RHIC. The integrated v_4 is about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8) harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding

    All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators

    Full text link
    We review our recent work on tunable, ultrahigh quality factor whispering-gallery-mode bottle microresonators and highlight their applications in nonlinear optics and in quantum optics experiments. Our resonators combine ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume, and near-lossless fiber coupling, with a simple and customizable mode structure enabling full tunability. We study, theoretically and experimentally, nonlinear all-optical switching via the Kerr effect when the resonator is operated in an add-drop configuration. This allows us to optically route a single-wavelength cw optical signal between two fiber ports with high efficiency. Finally, we report on progress towards strong coupling of single rubidium atoms to an ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B. Changes according to referee suggestions: minor corrections to some figures and captions, clarification of some points in the text, added references, added new paragraph with results on atom-resonator interactio
    • 

    corecore