77 research outputs found
Biomechanical difference in forward and lateral lunges and its changes in knee joint moment and functional measurement
Forward lunges (FL) and lateral lunges (LL) are two common variations of lunges, with different knee joint loading. The project aims to investigate the biomechanical differences between three lunges and measure the difference in knee joint moment and its association with Functional Movement Screen (FMS). Fifteen physically active healthy male adults were tested. Subjects were assessed in three movements, namely FMS in-line lunge, FL and LL in randomized order with three trials on each test. Measurements including a) adapted FMS score in 0-3 scale, b) 3D knee joint moment from motion capture system. The normalized knee joint moment in FL is significantly different from LL. There was a moderate and positive correlation shown between FMS score and Knee Flexion/Extension moment. Other correlations showed non-significant results. Knee joint moments were found significantly different between 3 lunges. FMS score cannot directly reflect knee kinetics under current scoring criteria
Attendance-related healthcare resource utilisation and costs in patients with Brugada Syndrome in Hong Kong: A retrospective cohort study.
Understanding healthcare resource utilisation and its associated costs are important for identifying areas of improvement regarding resource allocations. However, there is limited research exploring this issue in the setting of Brugada syndrome (BrS). This was a retrospective territory-wide study of BrS patients from Hong Kong. Healthcare resource utilisation for accident and emergency (A&E), inpatient and specialist outpatient attendances were analysed over a 19-year period, with their associated costs presented in US dollars. A total of 507 BrS patients with a mean presentation age of 49.9 ± 16.3 years old were included. Of these, 384 patients displayed spontaneous type 1 electrocardiographic (ECG) Brugada pattern and 77 patients had presented with ventricular tachycardia/ventricular fibrillation (VT/VF). At the individual patient level, the median annualised costs were 110 (52-224) at the (A&E) setting, 6812 (1982-32414) at the inpatient setting and 20161 [9147-189215] vs. 776 [438-1076] vs. 7036 [3136-14378] vs. 6812 per year. The total median annualised cost of BrS patients without VT/VF presentation was 78% lower compared to patients with VT/VF presentation. [Abstract copyright: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
Lipopolysaccharide-induced interferon response networks at birth are predictive of severe viral lower respiratory infections in the first year of life
Appropriate innate immune function is essential to limit pathogenesis and severity of severe lower respiratory infections (sLRI) during infancy, a leading cause of hospitalization and risk factor for subsequent asthma in this age group. Employing a systems biology approach to analysis of multi-omic profiles generated from a high-risk cohort (n = 50), we found that the intensity of activation of an LPS-induced interferon gene network at birth was predictive of sLRI risk in infancy (AUC = 0.724). Connectivity patterns within this network were stronger among susceptible individuals, and a systems biology approach identified IRF1 as a putative master regulator of this response. These findings were specific to the LPS-induced interferon response and were not observed following activation of viral nucleic acid sensing pathways. Comparison of responses at birth versus age 5 demonstrated that LPS-induced interferon responses but not responses triggered by viral nucleic acid sensing pathways may be subject to strong developmental regulation. These data suggest that the risk of sLRI in early life is in part already determined at birth, and additionally that the developmental status of LPS-induced interferon responses may be a key determinant of susceptibility. Our findings provide a rationale for the identification of at-risk infants for early intervention aimed at sLRI prevention and identifies targets which may be relevant for drug development
Progressive increase of FcεRI expression across several PBMC subsets is associated with atopy and atopic asthma within school-aged children
Background: Antigen-specific IgE binds the Fcε receptor I (FcεRI) expressed on several types of immune cells, including dendritic cells (DCs). Activation of FcεRI on DCs in atopics has been shown to modulate immune responses that potentially contribute to asthma development. However, the extent to which DC subsets differ in FcεRI expression between atopic children with or without asthma is currently not clear. This study aimed to analyse the expression of FcεRI on peripheral blood mononuclear cells (PBMCs) from atopic children with and without asthma, and non-atopic/non-asthmatic age-matched healthy controls. Methods: We performed multiparameter flow cytometry on PBMC from 391 children across three community cohorts and one clinical cohort based in Western Australia. Results: We confirmed expression of FcεRI on basophils, monocytes, plasmacytoid and conventional DCs, with higher proportions of all cell populations expressing FcεRI in atopic compared to non-atopic children. Further, we observed that levels of FcεRI expression were elevated across plasmacytoid and conventional DC as well as basophils in atopic asthmatic compared to atopic non-asthmatic children also after adjusting for serum IgE levels. Conclusion: Our data suggest that the expression pattern of FcεRI on DC and basophils differentiates asthmatic from non-asthmatic atopic children. Given the significant immune modulatory effects observed as a consequence of FcεRI expression, this altered expression pattern is likely to contribute to asthma pathology in children
Airway Microbiota Dynamics Uncover a Critical Window for Interplay of Pathogenic Bacteria and Allergy in Childhood Respiratory Disease.
Repeated cycles of infection-associated lower airway inflammation drive the pathogenesis of persistent wheezing disease in children. In this study, the occurrence of acute respiratory tract illnesses (ARIs) and the nasopharyngeal microbiome (NPM) were characterized in 244 infants through their first five years of life. Through this analysis, we demonstrate that >80% of infectious events involve viral pathogens, but are accompanied by a shift in the NPM toward dominance by a small range of pathogenic bacterial genera. Unexpectedly, this change frequently precedes the detection of viral pathogens and acute symptoms. Colonization of illness-associated bacteria coupled with early allergic sensitization is associated with persistent wheeze in school-aged children, which is the hallmark of the asthma phenotype. In contrast, these bacterial genera are associated with "transient wheeze" that resolves after age 3 years in non-sensitized children. Thus, to complement early allergic sensitization, monitoring NPM composition may enable early detection and intervention in high-risk children
Antibody stabilization for thermally accelerated deep immunostaining
Antibodies have diverse applications due to their high reaction specificities but are sensitive to denaturation when a higher working temperature is required. We have developed a simple, highly scalable and generalizable chemical approach for stabilizing off-the-shelf antibodies against thermal and chemical denaturation. We demonstrate that the stabilized antibodies (termed SPEARs) can withstand up to 4 weeks of continuous heating at 55 °C and harsh denaturants, and apply our method to 33 tested antibodies. SPEARs enable flexible applications of thermocycling and denaturants to dynamically modulate their binding kinetics, reaction equilibrium, macromolecular diffusivity and aggregation propensity. In particular, we show that SPEARs permit the use of a thermally facilitated three-dimensional immunolabeling strategy (termed ThICK staining), achieving whole mouse brain immunolabeling within 72 h, as well as nearly fourfold deeper penetration with threefold less antibodies in human brain tissue. With faster deep-tissue immunolabeling and broad compatibility with tissue processing and clearing methods without the need for any specialized equipment, we anticipate the wide applicability of ThICK staining with SPEARs for deep immunostaining
Recommended from our members
Potent acyl-CoA synthetase 10 inhibitors kill <i>Plasmodium falciparum</i> by disrupting triglyceride formation
Identifying how small molecules act to kill malaria parasites can lead to new chemically validated targets. By pressuring Plasmodium falciparum asexual blood stage parasites with three novel structurally-unrelated antimalarial compounds (MMV665924, MMV019719 and MMV897615), and performing whole-genome sequence analysis on resistant parasite lines, we identify multiple mutations in the P. falciparum acyl-CoA synthetase (ACS) genes PfACS10 (PF3D7_0525100, M300I, A268D/V, F427L) and PfACS11 (PF3D7_1238800, F387V, D648Y, and E668K). Allelic replacement and thermal proteome profiling validates PfACS10 as a target of these compounds. We demonstrate that this protein is essential for parasite growth by conditional knockdown and observe increased compound susceptibility upon reduced expression. Inhibition of PfACS10 leads to a reduction in triacylglycerols and a buildup of its lipid precursors, providing key insights into its function. Analysis of the PfACS11 gene and its mutations point to a role in mediating resistance via decreased protein stability
Neonatal genetics of gene expression reveal potential origins of autoimmune and allergic disease risk
Abstract: Chronic immune-mediated diseases of adulthood often originate in early childhood. To investigate genetic associations between neonatal immunity and disease, we map expression quantitative trait loci (eQTLs) in resting myeloid cells and CD4+ T cells from cord blood samples, as well as in response to lipopolysaccharide (LPS) or phytohemagglutinin (PHA) stimulation, respectively. Cis-eQTLs are largely specific to cell type or stimulation, and 31% and 52% of genes with cis-eQTLs have response eQTLs (reQTLs) in myeloid cells and T cells, respectively. We identified cis regulatory factors acting as mediators of trans effects. There is extensive colocalisation between condition-specific neonatal cis-eQTLs and variants associated with immune-mediated diseases, in particular CTSH had widespread colocalisation across diseases. Mendelian randomisation shows causal neonatal gene expression effects on disease risk for BTN3A2, HLA-C and others. Our study elucidates the genetics of gene expression in neonatal immune cells, and aetiological origins of autoimmune and allergic diseases
- …