116 research outputs found

    Ultrasound Liver Fibrosis Diagnosis using Multi-indicator guided Deep Neural Networks

    Full text link
    Accurate analysis of the fibrosis stage plays very important roles in follow-up of patients with chronic hepatitis B infection. In this paper, a deep learning framework is presented for automatically liver fibrosis prediction. On contrary of previous works, our approach can take use of the information provided by multiple ultrasound images. An indicator-guided learning mechanism is further proposed to ease the training of the proposed model. This follows the workflow of clinical diagnosis and make the prediction procedure interpretable. To support the training, a dataset is well-collected which contains the ultrasound videos/images, indicators and labels of 229 patients. As demonstrated in the experimental results, our proposed model shows its effectiveness by achieving the state-of-the-art performance, specifically, the accuracy is 65.6%(20% higher than previous best).Comment: Jiali Liu and Wenxuan Wang are equal contributio

    Auditing and Generating Synthetic Data with Controllable Trust Trade-offs

    Full text link
    Data collected from the real world tends to be biased, unbalanced, and at risk of exposing sensitive and private information. This reality has given rise to the idea of creating synthetic datasets to alleviate risk, bias, harm, and privacy concerns inherent in the real data. This concept relies on Generative AI models to produce unbiased, privacy-preserving synthetic data while being true to the real data. In this new paradigm, how can we tell if this approach delivers on its promises? We present an auditing framework that offers a holistic assessment of synthetic datasets and AI models trained on them, centered around bias and discrimination prevention, fidelity to the real data, utility, robustness, and privacy preservation. We showcase our framework by auditing multiple generative models on diverse use cases, including education, healthcare, banking, human resources, and across different modalities, from tabular, to time-series, to natural language. Our use cases demonstrate the importance of a holistic assessment in order to ensure compliance with socio-technical safeguards that regulators and policymakers are increasingly enforcing. For this purpose, we introduce the trust index that ranks multiple synthetic datasets based on their prescribed safeguards and their desired trade-offs. Moreover, we devise a trust-index-driven model selection and cross-validation procedure via auditing in the training loop that we showcase on a class of transformer models that we dub TrustFormers, across different modalities. This trust-driven model selection allows for controllable trust trade-offs in the resulting synthetic data. We instrument our auditing framework with workflows that connect different stakeholders from model development to audit and certification via a synthetic data auditing report.Comment: 49 pages; submitte

    The State of the Art of Medical Imaging Technology: from Creation to Archive and Back

    Get PDF
    Medical imaging has learnt itself well into modern medicine and revolutionized medical industry in the last 30 years. Stemming from the discovery of X-ray by Nobel laureate Wilhelm Roentgen, radiology was born, leading to the creation of large quantities of digital images as opposed to film-based medium. While this rich supply of images provides immeasurable information that would otherwise not be possible to obtain, medical images pose great challenges in archiving them safe from corrupted, lost and misuse, retrievable from databases of huge sizes with varying forms of metadata, and reusable when new tools for data mining and new media for data storing become available. This paper provides a summative account on the creation of medical imaging tomography, the development of image archiving systems and the innovation from the existing acquired image data pools. The focus of this paper is on content-based image retrieval (CBIR), in particular, for 3D images, which is exemplified by our developed online e-learning system, MIRAGE, home to a repository of medical images with variety of domains and different dimensions. In terms of novelties, the facilities of CBIR for 3D images coupled with image annotation in a fully automatic fashion have been developed and implemented in the system, resonating with future versatile, flexible and sustainable medical image databases that can reap new innovations

    Enhanced diagnostic immunofluorescence using biopsies transported in saline

    Get PDF
    BACKGROUND: The demonstration of tissue-bound immunoreactants by direct immunofluorescence microscopy (DIF) is a valuable parameter in the diagnosis of various autoimmune and immunecomplex-mediated skin diseases. For preservation of tissue-bound immunoreactants, biopsies are usually fresh-frozen in liquid nitrogen or transported in Michel's fixative. But even optimally preserved tissue specimens are no guarantee for the correct diagnosis by DIF, especially when weak to moderate IgG fluorescence of the epidermal basement membrane zone is involved. In such cases false negative results are easily obtained due to the relatively high dermal "background" fluorescence produced by polyclonal anti-human IgG fluorescein conjugates. METHODS: In the present study we have compared the use of normal saline (0.9% NaCl) with liquid nitrogen and Michel's fixative as transport medium for skin biopsies. From 25 patients with an autoimmune skin disease (pemphigus, pemphigoid, lupus erythematosus and vasculitis) four matched skin biopsies were obtained and transported in either saline for 24 and 48 hours, liquid nitrogen, or Michel's fixative for 48 hours. RESULTS: Direct IF microscopy showed significant reduction of background fluorescence (p < 0.01) and relatively enhanced desired specific (IgG, IgA) staining in biopsies transported in saline. A conclusive or tentative IF diagnosis was reached in 92% after 24 h saline, 83% after 48 h saline, 68% after freezing in liquid nitrogen, and 62% after 48 h Michel's medium (n = 25). CONCLUSIONS: We conclude that transporting biopsies without freezing in normal saline for 24 hours is an adequate and attractive method for routine IF diagnosis in autoimmune and immune complex-mediated dermatoses. The superior results with saline incubation are explained by washing away of IgG background in dermis and epidermis

    Direct Interrogation of Viral Peptides Presented by the Class I HLA of HIV-Infected T Cells

    Get PDF
    Identification of CD8+ cytotoxic T lymphocyte (CTL) epitopes has traditionally relied upon testing of overlapping peptide libraries for their reactivity with T cells in vitro. Here, we pursued deep ligand sequencing (DLS) as an alternative method of directly identifying those ligands that are epitopes presented to CTLs by the class I human leukocyte antigens (HLA) of infected cells. Soluble class I HLA-A*11:01 (sHLA) was gathered from HIV-1 NL4-3-infected human CD4+ SUP-T1 cells. HLA-A*11:01 harvested from infected cells was immunoaffinity purified and acid boiled to release heavy and light chains from peptide ligands that were then recovered by size-exclusion filtration. The ligands were first fractionated by high-pH high-pressure liquid chromatography and then subjected to separation by nano-liquid chromatography (nano-LC)–mass spectrometry (MS) at low pH. Approximately 10 million ions were selected for sequencing by tandem mass spectrometry (MS/MS). HLA-A*11:01 ligand sequences were determined with PEAKS software and confirmed by comparison to spectra generated from synthetic peptides. DLS identified 42 viral ligands presented by HLA-A*11:01, and 37 of these were previously undetected. These data demonstrate that (i) HIV-1 Gag and Nef are extensively sampled, (ii) ligand length variants are prevalent, particularly within Gag and Nef hot spots where ligand sequences overlap, (iii) noncanonical ligands are T cell reactive, and (iv) HIV-1 ligands are derived from de novo synthesis rather than endocytic sampling. Next-generation immunotherapies must factor these nascent HIV-1 ligand length variants and the finding that CTL-reactive epitopes may be absent during infection of CD4+ T cells into strategies designed to enhance T cell immunity

    Nuclear poly(ADP-ribose) activity is a therapeutic target in amyotrophic lateral sclerosis

    Get PDF
    Abstract Amyotrophic lateral sclerosis (ALS) is a devastating and fatal motor neuron disease. Diagnosis typically occurs in the fifth decade of life and the disease progresses rapidly leading to death within ~ 2–5 years of symptomatic onset. There is no cure, and the few available treatments offer only a modest extension in patient survival. A protein central to ALS is the nuclear RNA/DNA-binding protein, TDP-43. In > 95% of ALS patients, TDP-43 is cleared from the nucleus and forms phosphorylated protein aggregates in the cytoplasm of affected neurons and glia. We recently defined that poly(ADP-ribose) (PAR) activity regulates TDP-43-associated toxicity. PAR is a posttranslational modification that is attached to target proteins by PAR polymerases (PARPs). PARP-1 and PARP-2 are the major enzymes that are active in the nucleus. Here, we uncovered that the motor neurons of the ALS spinal cord were associated with elevated nuclear PAR, suggesting elevated PARP activity. Veliparib, a small-molecule inhibitor of nuclear PARP-1/2, mitigated the formation of cytoplasmic TDP-43 aggregates in mammalian cells. In primary spinal-cord cultures from rat, Veliparib also inhibited TDP-43-associated neuronal death. These studies uncover that PAR activity is misregulated in the ALS spinal cord, and a small-molecular inhibitor of PARP-1/2 activity may have therapeutic potential in the treatment of ALS and related disorders associated with abnormal TDP-43 homeostasis

    A Conserved PHD Finger Protein and Endogenous RNAi Modulate Insulin Signaling in Caenorhabditis elegans

    Get PDF
    Insulin signaling has a profound effect on longevity and the oxidative stress resistance of animals. Inhibition of insulin signaling results in the activation of DAF-16/FOXO and SKN-1/Nrf transcription factors and increased animal fitness. By studying the biological functions of the endogenous RNA interference factor RDE-4 and conserved PHD zinc finger protein ZFP-1 (AF10), which regulate overlapping sets of genes in Caenorhabditis elegans, we identified an important role for these factors in the negative modulation of transcription of the insulin/PI3 signaling-dependent kinase PDK-1. Consistently, increased expression of pdk-1 in zfp-1 and rde-4 mutants contributed to their reduced lifespan and sensitivity to oxidative stress and pathogens due to the reduction in the expression of DAF-16 and SKN-1 targets. We found that the function of ZFP-1 in modulating pdk-1 transcription was important for the extended lifespan of the age-1(hx546) reduction-of-function PI3 kinase mutant, since the lifespan of the age-1; zfp-1 double mutant strain was significantly shorter compared to age-1(hx546). We further demonstrate that overexpression of ZFP-1 caused an increased resistance to oxidative stress in a DAF-16–dependent manner. Our findings suggest that epigenetic regulation of key upstream signaling components in signal transduction pathways through chromatin and RNAi may have a large impact on the outcome of signaling and expression of numerous downstream genes.Leukemia & Lymphoma Society of America (3260-07 Special Fellow Award)Arnold and Mabel Beckman Foundation (Young Investigator Award)United States. National Institutes of Health (Director's New Innovator Award (1 DP2 OD006412-01))United States. National Institutes of Health (grant GM66269)modENCODE (grant U01 HG004270)United States. National Institutes of Health (training grant 5T32 GM07088-34

    The Wnt Receptor Ryk Reduces Neuronal and Cell Survival Capacity by Repressing FOXO Activity During the Early Phases of Mutant Huntingtin Pathogenicity

    Get PDF
    The Wnt receptor Ryk is an evolutionary-conserved protein important during neuronal differentiation through several mechanisms, including γ-secretase cleavage and nuclear translocation of its intracellular domain (Ryk-ICD). Although the Wnt pathway may be neuroprotective, the role of Ryk in neurodegenerative disease remains unknown. We found that Ryk is up-regulated in neurons expressing mutant huntingtin (HTT) in several models of Huntington's disease (HD). Further investigation in Caenorhabditis elegans and mouse striatal cell models of HD provided a model in which the early-stage increase of Ryk promotes neuronal dysfunction by repressing the neuroprotective activity of the longevity-promoting factor FOXO through a noncanonical mechanism that implicates the Ryk-ICD fragment and its binding to the FOXO co-factor β-catenin. The Ryk-ICD fragment suppressed neuroprotection by lin-18/Ryk loss-of-function in expanded-polyQ nematodes, repressed FOXO transcriptional activity, and abolished β-catenin protection of mutant htt striatal cells against cell death vulnerability. Additionally, Ryk-ICD was increased in the nucleus of mutant htt cells, and reducing γ-secretase PS1 levels compensated for the cytotoxicity of full-length Ryk in these cells. These findings reveal that the Ryk-ICD pathway may impair FOXO protective activity in mutant polyglutamine neurons, suggesting that neurons are unable to efficiently maintain function and resist disease from the earliest phases of the pathogenic process in HD. © 2014 Tourette et al

    Transcriptome profiling of sheep granulosa cells and oocytes during early follicular development obtained by Laser Capture Microdissection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Successful achievement of early folliculogenesis is crucial for female reproductive function. The process is finely regulated by cell-cell interactions and by the coordinated expression of genes in both the oocyte and in granulosa cells. Despite many studies, little is known about the cell-specific gene expression driving early folliculogenesis. The very small size of these follicles and the mixture of types of follicles within the developing ovary make the experimental study of isolated follicular components very difficult.</p> <p>The recently developed laser capture microdissection (LCM) technique coupled with microarray experiments is a promising way to address the molecular profile of pure cell populations. However, one main challenge was to preserve the RNA quality during the isolation of single cells or groups of cells and also to obtain sufficient amounts of RNA.</p> <p>Using a new LCM method, we describe here the separate expression profiles of oocytes and follicular cells during the first stages of sheep folliculogenesis.</p> <p>Results</p> <p>We developed a new tissue fixation protocol ensuring efficient single cell capture and RNA integrity during the microdissection procedure. Enrichment in specific cell types was controlled by qRT-PCR analysis of known genes: six oocyte-specific genes (<it>SOHLH2</it>, <it>MAEL</it>, <it>MATER</it>, <it>VASA</it>, <it>GDF9</it>, <it>BMP15</it>) and three granulosa cell-specific genes (<it>KL</it>, <it>GATA4</it>, <it>AMH</it>).</p> <p>A global gene expression profile for each follicular compartment during early developmental stages was identified here for the first time, using a bovine Affymetrix chip. Most notably, the granulosa cell dataset is unique to date. The comparison of oocyte vs. follicular cell transcriptomes revealed 1050 transcripts specific to the granulosa cell and 759 specific to the oocyte.</p> <p>Functional analyses allowed the characterization of the three main cellular events involved in early folliculogenesis and confirmed the relevance and potential of LCM-derived RNA.</p> <p>Conclusions</p> <p>The ovary is a complex mixture of different cell types. Distinct cell populations need therefore to be analyzed for a better understanding of their potential interactions. LCM and microarray analysis allowed us to identify novel gene expression patterns in follicular cells at different stages and in oocyte populations.</p
    corecore