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Abstract

Insulin signaling has a profound effect on longevity and the oxidative stress resistance of animals. Inhibition of insulin
signaling results in the activation of DAF-16/FOXO and SKN-1/Nrf transcription factors and increased animal fitness. By
studying the biological functions of the endogenous RNA interference factor RDE-4 and conserved PHD zinc finger protein
ZFP-1 (AF10), which regulate overlapping sets of genes in Caenorhabditis elegans, we identified an important role for these
factors in the negative modulation of transcription of the insulin/PI3 signaling-dependent kinase PDK-1. Consistently,
increased expression of pdk-1 in zfp-1 and rde-4 mutants contributed to their reduced lifespan and sensitivity to oxidative
stress and pathogens due to the reduction in the expression of DAF-16 and SKN-1 targets. We found that the function of
ZFP-1 in modulating pdk-1 transcription was important for the extended lifespan of the age-1(hx546) reduction-of-function
PI3 kinase mutant, since the lifespan of the age-1; zfp-1 double mutant strain was significantly shorter compared to age-
1(hx546). We further demonstrate that overexpression of ZFP-1 caused an increased resistance to oxidative stress in a DAF-
16–dependent manner. Our findings suggest that epigenetic regulation of key upstream signaling components in signal
transduction pathways through chromatin and RNAi may have a large impact on the outcome of signaling and expression
of numerous downstream genes.
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Introduction

The role of RNA interference (RNAi) in the silencing of

transposons and other repetitive elements is well documented

[1,2], while the knowledge of its impact on endogenous genes and

signaling pathways is limited. In this article we investigate the

remarkable and similar effects of the Caenorhabditis elegans RNAi-

promoting factors RNAi DEficient 4 (RDE-4) [3] and Zinc Finger

Protein 1 (ZFP-1) on the expression of stress-related genes. We focus

on the key gene regulated by RDE-4 and ZFP-1, pdk-1, which

encodes 3-phosphoinositide-dependent kinase-1 (PDK-1) [4], a

component of a conserved insulin-signaling pathway. We describe a

functional connection between zfp-1, rde-4 and insulin signaling in

genetic epistasis experiments and demonstrate the significance of

pdk-1 regulation by zfp-1 and rde-4 for C. elegans fitness.

ZFP-1, a Plant Homeo Domain (PHD) zinc finger protein, was

first identified as a factor promoting RNAi interference in C. elegans

[5–7]. It is a homolog of mammalian AF10 (Acute Lymphoblastic

Leukemia 1-Fused gene from chromosome 10) [8] and plays a key

role in leukemias caused by Mixed Lineage Leukemia MLL-AF10

fusion due to the recruitment of histone methyltransferase Dot1 by

the AF10 portion of the fusion protein [9]. The developmental and

physiological roles of AF10 are largely unknown. RDE-4 is a

double-stranded RNA (dsRNA)-binding protein and a component

of the Dicer complex responsible for the production of short

interfering RNAs (siRNAs) from exogenous dsRNA [10]. The rde-

4(ne299) null mutation was discovered in a screen for RNAi

resistant mutants [3]. rde-4(ne299) does not have obvious

developmental abnormalities, but shows synthetic phenotypes

when combined with the null mutant in C. elegans Retinoblastoma

gene lin-35 [11] and appears to be less healthy at elevated

temperatures [12]. Also, rde-4 mutants were reported to have a

slightly reduced lifespan [13]. The effects of rde-4 loss-of-function

are likely to be related to recently identified endogenous siRNAs
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(endo-siRNAs), which perfectly match thousands of genes in C.

elegans either in sense or antisense orientation [14–17]. Indeed, the

expression of some endo-siRNAs is diminished in the absence of

rde-4 [14,18].

Our recent genome-wide mRNA expression study has revealed

that ZFP-1 and RDE-4 affect the transcript levels of close to 250

overlapping genes [19]. Furthermore, putative target genes of

endo-siRNAs [16] showed a significant enrichment among genes

upregulated in the rde-4(ne299) null [3] and zfp-1(ok554) [20] loss-

of-function mutant larvae [19]. We proposed that ZFP-1 and

endo-siRNAs produced in an rde-4-dependent manner cooperate

in the repression of target genes in the nucleus. Here, we confirm a

direct repressive effect of ZFP-1 on endo-siRNA targets by

comparing gene expression changes in zfp-1(ok554) and rde-

4(ne299) with genome-wide localization of ZFP-1. Moreover, using

functional analysis of misregulated genes we predict a role for

RDE-4 and ZFP-1 in modulating insulin signaling and further

demonstrate that regulation of pdk-1 transcription by ZFP-1 and

endogenous RNAi underlies the oxidative stress sensitivity and

short lifespan of zfp-1(ok554) and rde-4(ne299) mutants.

Results

Gene expression signatures suggest a role for ZFP-1 and
RDE-4 in modulating insulin signaling

In order to elucidate the common biological roles of ZFP-1 and

endogenous RNAi we analyzed gene sets misregulated in zfp-

1(ok554) and rde-4(ne299) mutants [19]. We found that genes with

lowered expression in the mutants compared to the wild type were

enriched in metabolic, oxidative stress-related and anti-pathogenic

factors present in the intestine (Table S1). Since insulin signaling

mutations lead to increased expression of factors important for

defense against oxidative stress and pathogens [21–23], we decided

to compare the lists of genes downregulated in zfp-1(ok554) and rde-

4(ne299) with longevity-promoting ‘‘Class 1’’ genes found upregu-

lated in the daf-2 mutant in a daf-16-dependent manner [23].

Insulin-like signaling in C. elegans via the DAF-2 insulin

receptor and phosphatidylinositol 3-kinase (PI3K) negatively

regulates the DAF-16/FOXO [24,25] and SKN-1/Nrf [26]

transcription factors. When insulin signaling is reduced, the

enhanced DAF-16 and SKN-1 activities contribute to longer

lifespan and stress resistance in worms due to concerted regulation

of many of their targets [21–23,27,28]. DAF-16 and SKN-1 are

negatively regulated in part at the level of their nuclear

localization; therefore, mutants in this pathway are long-lived

due to a higher level of the active nuclear DAF-16 and SKN-1 and

appropriate transcriptional activation or repression of their direct

targets. Our analyses revealed that genes downregulated in the

zfp-1 and rde-4 mutants significantly overlapped with ‘‘Class 1’’

longevity promoting genes upregulated in the daf-2 mutant (a

condition when DAF-16 and SKN-1 are activated) [23] (Figure 1,

Table 1, Table S1). Examples of genes whose expression is

negatively regulated by daf-2 and positively regulated by zfp-1

and/or rde-4 include glutathione transferases gst-4 and gst-38, and

aquaporin (aqp-1) (Table 1, Figure 2A). Since RNAi is a gene-

silencing phenomenon and gene sets expressed lower in zfp-

1(ok554) and rde-4(ne299) are not enriched in endo-siRNA targets

[19], we predict that ‘‘Class 1’’ longevity-promoting genes are

regulated by ZFP-1 and RDE-4 indirectly. Consistently, genome-

wide localization data showed no enrichment of ZFP-1 at

longevity-promoting genes (Figure 1).

A higher level of pdk-1 expression in zfp-1(ok554) and
rde-4(ne299) correlates with lower expression of DAF-16
target genes

We considered the possibility that a direct target gene negatively

regulated by rde-4 and zfp-1 would be de-repressed in the mutants

to account for the reduced expression of the secondary targets,

which may therefore be regulated by these factors indirectly.

Indeed, a component of the insulin-signaling pathway, the kinase

PDK-1, was among the most upregulated genes in zfp-1 and rde-4

[19] (Figure 2A). Although our microarray study was performed

on zfp-1 and rde-4 mutant larvae (L1–L2), we found that pdk-1

expression was increased in these mutants at other developmental

stages as well (Figure 2A).

The zfp-1 gene was shown to be a direct target of DAF-16 by

chromatin immunoprecipitation (ChIP) combined with sequenc-

ing [29] and, more recently, using chromatin profiling by DNA

adenine methyltransferase identification (DamID) [30]. However,

it was not clear whether DAF-16 had a significant role in the

regulation of zfp-1. We found that zfp-1 mRNA expression in the

daf-2 mutant background was influenced by daf-16 and was 2-fold

lower in the daf-2; daf-16 double mutant strain (Figure 2B).

Therefore, DAF-16 appears to enhance transcription of zfp-1,

although not nearly to the same extent as other prominent DAF-

16 targets, such as sod-3 (Figure 2B).

The analyses of gene expression described above suggest a

model where ZFP-1 and RDE-4 modulate the insulin-signaling

pathway by repressing pdk-1 and that a DAF-16-dependent

enhancement of zfp-1 expression under conditions of low insulin

signaling may contribute to a positive-feedback loop enhancing the

effect of DAF-16 on other targets (Figure 2C).

Nuclear localization of DAF-16::GFP conferred by the pdk-
1(sa709) mutation persists in zfp-1; pdk-1 and rde-4; pdk-1
double mutants

Next, we determined a molecular lesion in the weak loss-of-

function pdk-1 allele sa709 [4] and tested whether the pdk-1(sa709)

mutant mRNA was still regulated by ZFP-1and RDE-4. We found

that sa709 affects pdk-1 mRNA splicing and leads to the

incorporation of intron three into the mature pdk-1 mRNA with

Author Summary

Reduced activity of the insulin-signaling pathway genes
has been associated with a longer lifespan and increased
resistance to oxidative stress in animals due to the
activation of important transcription factors, which act as
master regulators and affect large networks of genes. The
ability to manipulate insulin signaling and reduce its
activity may allow activation of oxidative-stress response
programs in pathological conditions, such as neuronal
degeneration, where oxidative stress plays a significant
role. Here, we describe a new way of inhibiting insulin
signaling that exists in the nematode Caenorhabditis
elegans. We find that transcription of one of the insulin-
signaling genes is inhibited by mechanisms involving
chromatin and RNA interference, a silencing process that
depends on short RNAs. We demonstrate that mutants
deficient in RNA interference are more susceptible to stress
due to increased insulin signaling and that increased
dosage of a chromatin-binding protein repressing insulin
signaling and promoting RNA interference leads to better
survival of nematodes grown under oxidative stress
conditions. Since there is a clear homolog of this
chromatin-binding protein in mammals, it may also act
to promote resistance to oxidative stress in human cells
such as neurons.

RNAi Modulates Insulin Signaling in C. elegans
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a very low expression level of the correctly spliced mRNA in the

mutant (Figure 3A, 3B). We combined pdk-1(sa709) with zfp-

1(ok554) and found the level of mutant pdk-1 mRNA expression to

be elevated in the double mutant compared to pdk-1(sa709) alone

(Figure 3C). The pdk-1(sa709) mRNA expression was also elevated

in rde-4(ne299); pdk-1(sa709) (Figure 3C). Therefore, regulation of

pdk-1(sa709) mRNA expression by ZFP-1 and RDE-4 was similar

to that of wild type pdk-1 mRNA.

Since loss-of-function mutations in insulin-signaling components

lead to increased nuclear localization of DAF-16::GFP [31], we

tested the pdk-1(sa709) allele in this assay and found that DAF-

16::GFP had more prominent nuclear localization in pdk-1(sa709),

while it was mostly cytoplasmic in wild type, zfp-1(ok554) and rde-

4(ne299) worms (Figure 3D, 3E). Nuclear localization of DAF-

16::GFP persisted in pdk-1; zfp-1 and pdk-1; rde-4 double mutant

animals (Figure 3D, 3E). These results demonstrate that pdk-

1(sa709) is epistatic to zfp-1(ok554) and rde-4(ne299) and support a

model where ZFP-1 and RDE-4 affect expression of DAF-16

targets through regulation of pdk-1.

The short life span and enhanced sensitivity to oxidative
stress of zfp-1(ok554) and rde-4(ne299) depend on PI3K
signaling

Since longevity-promoting genes have lower expression in the

zfp-1 and rde-4 mutants, it is expected that they may live shorter

than wild type worms. Indeed, a decrease in lifespan of zfp-

1(ok554) [29] and rde-4(ne299) [13] has been reported, with the zfp-

1 mutant exhibiting a stronger phenotype than rde-4. In order to

test whether upregulation of PDK-1 and therefore increased

insulin signaling may contribute to the short lifespan of zfp-1, we

conducted epistasis experiments with a reduction-of-function

mutation in the PI3 kinase AGE-1, age-1(hx546) [32,33]. We

found that the short lifespan phenotype of zfp-1(ok554) was

suppressed by age-1(hx546) (Figure 4A), i.e. the reduction in

lifespan of the mutant was dependent on the active insulin

signaling. Also, the extended lifespan of age-1(hx546) was

dependent on ZFP-1 function, consistent with the possibility that

enhanced PDK-1 dosage may suppress the defect in signaling

Figure 1. Longevity-promoting genes are expressed lower in zfp-1(ok554) and rde-4(ne299). Venn diagrams are used to show overlaps
between the ‘‘Class 1’’ longevity-promoting gene set from [23], gene sets determined to be UP- or DOWN-regulated in the mutants according to [19]
and direct ZFP-1 target genes identified by ChIP/chip (modENCODE). Gene sets were first mapped to 18,459 genes with TOPOMAP [73]
representation (with recalls ranging from 74% to 84%), and TOPOMAP-represented genes were included in the Venn diagrams. Fisher’s exact test was
used for calculating p values for overlaps.
doi:10.1371/journal.pgen.1002299.g001
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conferred by the non-null age-1 mutation (Figure 4A). Indeed,

increased pdk-1 dosage suppresses the constitutive dauer pheno-

type of age-1(mg44) [4].

In order to show that high levels of pdk-1 expression contributed

to the short lifespan of zfp-1(ok554) we attempted to combine zfp-

1(ok554) with a strong loss-of-function mutation pdk-1(sa680) [4]

for genetic suppression analyses. We were not able to recover zfp-

1(ok554); pdk-1(sa680) and assume that this double mutant is not

viable. Therefore, all epistasis analyses described below were

performed with the sa709 allele.

zfp-1 and rde-4 affect expression of multiple target genes, and

some phenotypes of zfp-1(ok554), such as dauer promotion [29],

Table 1. Longevity-promoting genes [23] overlapping with genes expressed lower in zfp-1(ok554) L1-L2 larva according to [19].

Cosmid ID
Gene
Name Description Mounta Categorya

Down in
rde-4 [19]

K12G11.3 sodh1
/dod-11

SOrbitol DeHydrogenase family #08 Intestine yes

C25E10.9 swm-1 Sperm activation Without Mating #08 Intestine no

C52E4.1 cpr-1 Cysteine Protease Related #08 Intestine Intestine yes

F09F7.6 Protein of unknown function #15 yes

F21C10.10 Protein of unknown function Male enriched yes

JC8.8 ttr-51 TransThyretin Related family domain #22 Collagen no

F48D6.4 Protein of unknown function #08 Intestine yes

PDB1.1 Mitochondrial Fe2+ transporter MMT1 and related
transporters

#08 Intestine no

F08B12.4 Protein of unknown function #08 Intestine yes

K01A2.2 far-7 Fatty Acid/Retinol binding protein #15 Male enriched yes

ZC395.5 Protein of unknown function #15 yes

ZK1320.2 Protein of unknown function #08 Intestine yes

F54D5.3 Protein of unknown function #08 Intestine yes

K07C6.4 cyp-35B1/
dod-13

Cytochrome P450 family #22 Collagen Cytochrome p450, lipid
metabolism

no

W01B11.6 Protein of unknown function #08 Intestine no

F18E3.7 ddo-2 D-aspartate oxidase #08 Intestine no

F28A12.4 Aspartyl protease #19 Amino acid
metabolism

Proteases no

F43H9.4 Protein of unknown function #15 yes

C02A12.4 lys-7 LYSozyme #08 Intestine yes

F13D11.4 Flavonol reductase/cinnamoyl-CoA reductase #14 Collagen no

R12A1.4 ges-1 Abnormal Gut ESterase #08 Intestine Intestine yes

R09B5.6 hacd-1 Hydroxy-Acyl-CoA Dehydrogenase #22 Collagen Biosynthesis; fatty acid
oxidation; lipid metabolism

no

F46C5.1 Protein of unknown function #08 Intestine yes

C24B9.9 dod-3 Downstream of DAF-16 #15 Male enriched yes

T19B10.2 phi-59 #14 Collagen no

F09F7.7 2-Oxoglutarate- and iron-dependent
dioxygenase-related proteins

#15 yes

Y43C5A.3 Protein of unknown function #15 yes

ZK550.6 Peroxisomal phytanoyl-CoA hydroxylase #08 Intestine yes

F32A5.5 aqp-1 AQuaPorin #08 Intestine no

T22F3.11 Permease of the major facilitator superfamily #08 Intestine yes

T23G7.3 Telomerase elongation inhibitor/RNA maturation protein #02 Germline enriched no

B0218.8 clec-52 C-type LECtin #08
Intestine

no

K08F4.7b gst-4 Glutathione S Transferase yes

F35E8.8b gst-38 Glutathione S Transferase #24 Amino acid
metabolism fatty acid
oxidation; lipid
metabolism

yes

aFunctional annotation of genes is done based on TOPOMAP classification [73]
bThese genes are prominently regulated by SKN-1 [74], gst-38 is not listed among ‘‘class 1’’ longevity-promoting genes defined by [23].
doi:10.1371/journal.pgen.1002299.t001
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are similar rather than opposite to the phenotypes of insulin-

signaling mutants. We have found that zfp-1; pdk-1 and rde-4; pdk-1

double mutants display some egg-laying deficiency, which

complicates the longevity assays that we conduct in the absence

of drugs inducing sterility. However, although zfp-1; pdk-1 and rde-

4; pdk-1 worms were undoubtedly sicker than zfp-1 or rde-4 single

mutants, we found that the reduction of pdk-1 function significantly

suppressed the decreased lifespans of zfp-1(ok554) and rde-4(ne299)

(Figure 4B, 4C). These results further support the idea that ZFP-1

and RDE-4 affect insulin signaling through the negative regulation

of pdk-1.

The gene expression signatures of zfp-1 and rde-4 mutants

suggested that they could be deficient in oxidative stress response.

We induced oxidative stress by soaking L4 animals in 100mM

paraquat and found that the zfp-1(ok554) mutant strain was much

more sensitive to this treatment compared to the wild type

(Figure 4D), similarly to daf-16(mu86) (Figure 4D), while rde-

4(ne299) showed moderate sensitivity (Figure 4D, Figure S1A), and

age-1(hx546) and pdk-1(sa709) were more resistant than wild type

(Figure 4D). We found that zfp-1; age-1, zfp-1; pdk-1 and rde-4; age-

1, rde-4; pdk-1 double mutants were less sensitive to oxidative stress

than zfp-1 and rde-4, respectively (Figure 4D), indicating that the

stress sensitivity of zfp-1(ok554) and rde-4(ne299) was due to active

insulin/PI3K signaling.

In order to determine whether increased pdk-1 expression may

be sufficient to cause a stress sensitivity phenotype, we tested the

SP940 strain, which contains the free duplication mnDp (II;X;f)

that includes the pdk-1 locus. We found that pdk-1 mRNA levels

are increased about 2.5-fold in this strain (Figure S1C), close

to that observed in rde-4(ne299), and it shows a comparable

sensitivity to paraquat (Figure S1A, S1B). These data are

consistent with the idea that regulating pdk-1 dosage is important

for animal fitness.

Increase in ZFP-1 expression promotes resistance to
oxidative stress in a DAF-16–dependent manner

We generated transgenic lines expressing ZFP-1::GFP and ZFP-

1::FLAG fusion proteins by introducing tags into the C-terminal

region of ZFP-1 through fosmid recombineering in bacteria [34].

The resulting genes are expressed from the 30kb fosmid and are

subject to the same regulatory inputs as the endogenous zfp-1

locus; the transgenes fully rescued the stress sensitivity and reduced

lifespan phenotypes of the zfp-1 mutant (Figure 5A, 5B). zfp-1

mRNA expression was about two-fold greater in ZFP-1 transgenic

lines compared to the control (Figure S2). Moreover, we found

that these ZFP-1 overexpressing lines were more resistant to

oxidative stress compared to the control line generated by a similar

technique of unc-119 mutant rescue but not containing the ZFP-1

Figure 2. Gene expression signature connects zfp-1, rde-4 and the insulin-signaling pathway. (A) pdk-1 mRNA levels and mRNA levels of
downstream targets repressed by insulin signaling as measured by real time RT-qPCR in the indicated mutants (L4 stage animals) and normalized to
wild type. Results of three biological replicas are shown; error bars represent Standard deviation. (B) zfp-1 and sod-3 mRNA levels measured by real
time RT-qPCR in daf-2; daf-16 double mutant L4 worms and normalized to daf-2 mutant background, results of two biological replicas are shown. (C)
Insulin-signaling pathway in C. elegans modified according to results shown in (A, B) and Figure 1.
doi:10.1371/journal.pgen.1002299.g002
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Figure 3. pdk-1 loss-of-function mutation sa709 is epistatic to zfp-1(ok554) and rde-4(ne299). (A) Schematic of the pdk-1 gene with
numbered boxes for exons and lines for introns, location of the sa709 mutation and predicted effects of the mutation on mRNA and protein; exons

RNAi Modulates Insulin Signaling in C. elegans
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fosmid (Figure 5A). The stress resistance of ZFP-1 overexpressing

lines was dependent on DAF-16 function (Figure 5A). This is

consistent with the repression of insulin signaling and therefore

indirect activation of DAF-16 by ZFP-1. We have not observed

lifespan extension in the ZFP-1 overexpressing lines (Figure 5B),

which indicates that a higher level of ZFP-1 may be advantageous

only in acute stress situations.

ZFP-1 functions to protect the animals against
pathogenic challenge

An example of an acute stress response is the response of

animals to pathogens. The human pathogenic bacterium

Pseudomonas aeruginosa (PA14) inhibits DAF-16 nuclear localiza-

tion and therefore downregulates the expression of defense

factors that are dependent on DAF-16 [35]. We tested the effect

Figure 4. Functional connection between zfp-1, rde-4 and insulin/PI3K signaling. (A-C) Life span of indicated mutant strains (see Materials
and Methods). (A) Mean life spans were significantly different between wild type and all mutants (P,0.0001 age-1, P,0.01 daf-16, P,0.0001 zfp-1,
P,0.001 zfp-1; age-1). Data shown is from one representative experiment that has been performed three times. (B) Mean life spans were significantly
different between wild type and both pdk-1 and zfp-1 mutants (P,0.002 pdk-1, P,0.0001 zfp-1) while zfp-1 was found to be significantly different
from zfp-1; pdk-1 (P,0.01). Data shown is from one representative experiment that has been performed three times. (C) Mean life spans were
significantly different between wild type and all mutants (P,0.0001 pdk-1, P,0.01 rde-4, P,0.0001 rde-4; pdk-1). Data shown is from one
representative experiment that has been performed two times. (D) Survival of L4 larva (n = 120) from indicated strains after 20 hour incubation period
in 100mM paraquat: *** indicates significance of P,0.001, ** - P,0.01 and * - P,0.05 compared to wild type, # indicates significance of P,0.05 and
## - P,0.01 compared to respective single mutant.
doi:10.1371/journal.pgen.1002299.g004

coding for the kinase domain and the pleckstrin homology domain (PH) according to [4] are indicated. (B) Expression levels of correctly spliced pdk-1
mRNA and intron 3-containing mRNA were determined by RT-qPCR, and ratios of spliced/unspliced isoforms in the indicated mutants were
calculated and presented on a graph. The forward primer used spanned the exon 1/exon 2 junction, the reverse primer for the spliced isoform
spanned the exon 3/exon 4 junction and the reverse primer for the intron 3-containing isoform was intron 3-specific (see Materials and Methods). (C)
Intron 3-containing pdk-1 mRNA levels were measured by real time RT-qPCR in indicated mutants (L4 stage animals) and normalized to pdk-1(sa709).
Results of two biological replicas are shown; error bars represent Standard deviation. (D, E) DAF-16::GFP nuclear localization in indicated mutants was
assessed as described in Materials and Methods. Representative epifluorescence images of intestinal cells (D) were taken on a Zeiss AxioImager Z1
microscope at 630x total magnification; white arrowheads point to the nuclei.
doi:10.1371/journal.pgen.1002299.g003
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of the loss of ZFP-1 function on innate immunity by assaying

the survival of zfp-1(ok554) animals. Upon exposure to PA14

under the standard infection assay conditions [36], we observed

that the zfp-1(ok554) mutants were significantly more suscep-

tible to P. aeruginosa infection- mediated killing (Figure 6A, 6B).

The pathogen sensitivity seen in zfp-1(ok554) mutants was

due to loss of ZFP-1 function as was confirmed using a

ZFP-1::GFP transgene that rescued the mutant phenotype

(Figure 6B).

Next, we tested whether the increased susceptibility of zfp-

1(ok554) to PA14 was dependent on insulin signaling. We

confirmed that age-1(hx546) was more resistant to the infection

(Figure 6C) and tested age-1; zfp-1 double mutants. The results

were similar to those found in the longevity assays: age-1 and zfp-1

suppressed each other’s phenotypes (Figure 6C). The survival of

the double mutant was closer to that of zfp-1(ok554) than age-

1(hx546), although age-1 significantly suppressed the sensitivity of

zfp-1 to PA14 killing. We conclude that PI3K signaling contributes

to the pathogen-sensitivity of zfp-1(ok554).

ZFP-1 localizes to the pdk-1 promoter but not to the
promoters of DAF-16 targets

Consistent with our expression and genetic epistasis data

suggesting a direct role of ZFP-1 in repressing pdk-1 transcrip-

tion, a strong peak of ZFP-1 localization was found at the pdk-1

promoter in ChIP/chip experiments conducted by the

modENCODE (model organism ENCyclopedia Of DNA

Elements) project (Figure 7A). We confirmed ZFP-1 localization

to the pdk-1 promoter by ChIP/PCR with antibodies specific to

endogenous ZFP-1 (Figure 7B) as well as with anti-FLAG

antibodies in experiments with ZFP-1::FLAG transgenic lines

(Figure 8A).

ZFP-1 was not localized to the promoters of other genes of the

insulin signaling pathway (daf-2, age-1, akt-1, sgk-1); it was also not

present at DAF-16 target genes that have reduced expression in

zfp-1(ok554) and appear to be positively regulated by this factor, as

discussed earlier (Figure 1, Figure 7B, Figure 8A, and Table S1).

There was no enrichment in direct ZFP-1 targets among the

longevity-promoting genes (P-value 0.83) (Figure 1). Therefore,

Figure 5. Increase in ZFP-1 expression promotes resistance to oxidative stress. (A) Survival of L4 larva (n = 120) from indicated strains after
20 hour incubation period in 100mM paraquat: *** indicates significance of P,0.001, ** - P,0.01 and * - P,0.05 compared to the control transgenic
strain. (B) Life span of indicated transgenic strains. Mean life spans were significantly different between the control strain and all other strains
(P,0.0001). Control; zfp-1 was found to be significantly different from both ZFP-1::FLAG and ZFP-1::FLAG; zfp-1 (P,0.0001). Life spans were
determined in parallel for all strains; data shown is from one representative experiment that has been performed two times.
doi:10.1371/journal.pgen.1002299.g005
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ZFP-1 is likely to target directly only genes whose transcription it

inhibits (Table S1).

Endogenous siRNAs map to the pdk-1 promoter
We reported previously a very significant overlap between genes

negatively regulated by zfp-1 and rde-4 and endogenous siRNA

target genes [19]. Consistently, we find that direct ZFP-1 target

genes are overrepresented among genes expressed higher in the

rde-4 mutant (Figure 7C). pdk-1 is repressed by ZFP-1 and is also

negatively regulated by RDE-4, which is a dsRNA-binding protein

required for the biogenesis of siRNAs in the exogenous RNAi

pathway [10] and contributing to the biogenesis of some endo-

siRNAs [14,18]. Knowing this, we searched available deep

sequencing data [37–40] for endo-siRNAs mapping to the pdk-1

locus. There were few endo-siRNAs corresponding to the coding

region of pdk-1, and more siRNAs mapped to the promoter region

of the gene (5kb upstream of the transcription start site), including

a predicted open reading frame, H42K12.2. (Figure 7A). How-

ever, for this open reading frame, no transcriptional evidence

exists, neither from EST collections nor from deep sequencing

runs undertaken in the context of the modENCODE project, and

it therefore appears to be a mis-annotated gene [41,42]. We were

able to detect ,100–250 nt transcripts at the pdk-1 promoter

produced from both the plus and minus DNA strands, consistent

with the possibility of dsRNA production and processing by RDE-

4 and Dicer (Figure 7D and Text S1). Moreover, we detected an

elevated level of this RNA in the rde-4 mutant (Figure 7E), further

supporting the possible involvement of RDE-4 in the dsRNA

processing. Unfortunately, pdk-1 promoter-specific endo-siRNAs

are expressed at a very low level, and we were not able to reliably

detect them by RT-qPCR. Nevertheless, additional evidence for

pdk-1 regulation by endogenous RNAi comes from the observation

that pdk-1 mRNA levels are increased in drh-3(ne4253), a loss-of-

function mutant in dicer-related helicase 3 [38], (Figure 8B). DRH-

3 is thought to participate in multiple branches of endogenous

RNAi in C. elegans [38].

RNA polymerase II occupancy at the pdk-1 coding region
is increased in zfp-1(ok554) and rde-4(ne299)

We have shown that both zfp-1 and rde-4 affect the longevity of

C. elegans and its ability to resist oxidative stress and that pdk-1

mRNA levels are elevated in zfp-1(ok554) and rde-4(ne299) ([19]

and Figure 1 and Figure 3). Furthermore, we have demonstrated

that ZFP-1 binds the pdk-1 promoter and that endogenous

siRNAs also have a potential to regulate pdk-1 directly. Next, we

analyzed RNA polymerase II (Pol II) occupancy at the pdk-1

promoter and coding region by ChIP in wild type, zfp-1(ok554)

and rde-4(ne299) L3-L4 animals and found it to be significantly

increased in both mutants (Figure 8C, 8D). Consistent with

transcriptional regulation, pdk-1 pre-mRNA levels were elevated in

both mutants as well (Figure 8E). RDE-4, and therefore rde-4-

dependent endo-siRNA production, did not affect ZFP-1 locali-

zation to the pdk-1 promoter (Figure 8A). It is possible that ZFP-1

and the RNAi machinery are independently recruited to the same

targets and cooperate in inhibiting their transcription. Alterna-

tively, ZFP-1 may help stabilize downstream RNAi factors at the

endo-siRNA target genes.

Pol II levels increased only at the promoters, but not at the

coding regions of indirect target genes expressed lower in zfp-

1(ok554) and rde-4(me299) (Figure 8C, 8D), a signature consistent

with a slower rate of transition from transcriptional initiation to

elongation [43]. This finding reflects the lower expression of these

genes in the mutants, although they are not regulated directly by

ZFP-1 and do not belong to the group of prevalent endo-siRNA

targets ([19] and Table S1).

We have previously described a very significant overlap between

genes misregulated in zfp-1(ok554) and genes misregulated in rde-

4(ne299) and noted that the level of expression of zfp-1 mRNA did

not change in rde-4(ne299) and vice versa [19]. Since the rde-4

mutation has milder effects on gene expression than zfp-1(ok554),

they could potentially be due to zfp-1 misregulation. Therefore, we

further confirmed that protein levels of ZFP-1 are not decreased in

rde-4(ne299) (Figure S3).

ZFP-1 localizes to the pdk-1 promoter and both the pdk-1

mRNA level and Pol II occupancy at the pdk-1 gene are increased

Figure 6. zfp-1(ok554) is sensitive to P. aeruginosa. (A–C) Killing
assays demonstrating survival on P. aeruginosa (PA14). (A) Percent
survival was found to be significantly different between wild type and
both daf-16 and zfp-1 mutants (P,0.0001 zfp-1, P,0.0004 daf-16). (B)
Percent survival was found to be significantly different between wild
type and both zfp-1(ok554) and ZFP-1::GFP; zfp-1 (P,0.0001 zfp-1,
P,0.01 ZFP-1::GFP; zfp-1); zfp-1(ok554) was found to be significantly
different from ZFP-1::GFP; zfp-1 (P,0.0001). (C) Percent survival was
significantly different between wild type and all mutants (P,0.0001
age-1, P,0.0001 zfp-1, P,0.001 zfp-1; age-1); zfp-1(ok554) was found to
be significantly different from zfp-1; age-1 (P,0.0001). Data shown is
from one representative experiment that has been performed three
times (see Materials and Methods).
doi:10.1371/journal.pgen.1002299.g006
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Figure 7. ZFP-1, dsRNA, and siRNAs localize to the promoter of pdk-1. (A) A screen shot of the pdk-1 locus generated using the UCSC
browser and indicating ZFP-1 localization peaks (ChIP/chip modENCODE data), cloned endo-siRNAs from [38] - (WT1) and [37] - (WT2), and promoter
regions 1 and 2 with detected bi-directional transcription shown in (D). Antisense siRNAs are indicated in red, sense siRNAs in blue. (B) ZFP-1 ChIP/
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in zfp-1(ok554). These findings strongly suggest that transcription

of pdk-1 is directly and negatively modulated by ZFP-1. Our

genetic and molecular data also clearly demonstrate that rde-4 has

a role in the transcriptional regulation of pdk-1. Several lines of

evidence provide correlative support for a possible direct role of

endo-siRNAs in pdk-1 regulation: endo-siRNAs match the pdk-1

promoter in a region also targeted by ZFP-1, dsRNA production

is detected at the promoter and is increased in rde-4(ne299), and

pdk-1 mRNA levels are elevated in at least two RNAi pathway

mutants. However, since the endo-siRNAs targeting pdk-1 are not

very abundant, we were not able to determine whether they

change in rde-4(ne299), and there is a possibility that rde-4 affects

pdk-1 transcription indirectly. In either case, RDE-4 is most likely

involved in gene regulation through endo-siRNA production since

this is the only known molecular function of this protein. The

relatively more abundant endo-siRNAs matching the pdk-1

promoter (Figure 7A) are not unique and correspond to the

repeat sequences. The Argonaute proteins that bind endo-siRNAs

and work downstream in the RNAi pathways have been described

and include at least two separate branches: the CSR-1 branch [37]

Figure 8. ZFP-1 and RDE-4 regulate transcription of pdk-1. (A) ZFP-1::FLAG ChIP with anti-FLAG antibodies in wild type and rde-4(ne299)
demonstrating DNA enrichment in IP relative to input by qPCR on the promoters – ‘‘P’’ and coding regions – ‘‘C’’ of the genes shown. Results of two
biological replicas are shown; error bars represent Standard deviation. (B) pdk-1 mRNA levels measured by RT-qPCR in the drh-3 mutant at different
larval stages and normalized to wild type. (C, D) RNA polymerase II ChIP with 8WG16 antibodies (Covance) in wild type and zfp-1(ok554) (C) or wild
type and rde-4(ne299) (D) demonstrating DNA enrichment relative to wild type by qPCR on the promoters – ‘‘P’’ and coding regions – ‘‘C’’ of the
genes shown. Results of two biological replicas are shown; error bars represent Standard deviation; * indicates significance of P,0.05 compared to
wild type. Worm preps used for Pol II ChIP were the same as those used for mRNA expression analysis shown in Figure 2A. (E) pdk-1 pre-mRNA levels
measured by RT-qPCR in indicated mutants (L4 stage animals) and normalized to wild type. Results of two biological replicas are shown; error bars
represent Standard deviation.
doi:10.1371/journal.pgen.1002299.g008

PCR with antibodies recognizing the C-terminus of the protein used for ChIP/chip shown in (A) in wild type and zfp-1(ok554) demonstrating DNA
enrichment in IP relative to input by qPCR on the promoters – ‘‘P’’ and coding regions – ‘‘C’’ of the genes shown. Results of two biological replicas are
shown; error bars represent Standard deviation. (C) Venn diagram showing statistically significant overlap between ZFP-1 target genes identified by
ChIP/chip, where the ZFP-1 peak was found in the 1,500bp promoter window, and genes upregulated in rde-4(ne299) from [19]. (D) RT-PCR detecting
transcription from both (2) and (+) DNA strands at indicated regions of the pdk-1 promoter. (E) RT-qPCR measuring expression from the region 1 in
the pdk-1 promoter. The average of four biological replicas is shown, error bars represent Standard deviation, P,0.05.
doi:10.1371/journal.pgen.1002299.g007
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and the WAGO branch [38]. Although CSR-1-bound endo-

siRNAs are enriched in sequences antisense to protein-coding

genes, they also include endo-siRNAs matching repeats [37], while

the WAGO system appears to preferentially target repeats and

pseudogenes [38]. Both the WAGO and CSR-1 systems have been

shown to have some connection to the RDE-4-regulated genes

[38,44], and ZFP-1 ChIP/chip targets are enriched in both

WAGO and CSR-1-dependent endo-siRNA target gene sets (G.

Cecere, M. Jensen, et al., manuscript in preparation). Therefore,

we think that regulation of some endogenous genes, such as pdk-1,

which contain simple repeats in their promoters, may have evolved

to depend on the RNAi surveillance system, either WAGO or

CSR-1-based.

Discussion

ZFP-1/AF10 and resistance to oxidative stress
This work has revealed a direct repression of pdk-1 transcrip-

tion by C. elegans AF10 homolog ZFP-1 and the significance of

this transcriptional regulation in modulating insulin signaling.

We have demonstrated that overexpression of ZFP-1 leads to

enhanced resistance to oxidative stress in nematodes in a DAF-

16-dependent manner. The role of DAF-16/FOXO in longevity

and stress response is conserved in animals [45], and it would be

interesting to see whether AF10 has a role in promoting stress

resistance through the activation of FOXO. FOXO proteins have

been shown to cause a neuroprotective effect in C. elegans,

Drosophila and mammalian models of neurodegeneration [46].

Another transcription factor involved in the antioxidant response,

Nrf2 – a homolog of C. elegans SKN-1 - has been implicated in the

neuroprotection of motor neurons in a mouse model of ALS [47],

while SKN-1 was shown to be important for protection of

dopamine neurons against methylmercury-induced degeneration

in C. elegans [48]. Since both DAF-16 and SKN-1 are negatively

regulated by insulin/PI3K signaling in C. elegans [45] (Figure 2C),

perhaps inhibition of this signaling pathway in mammalian

neurons will lead to activation of both FOXO3a and Nrf2.

Our work suggests that the homolog of ZFP-1, AF10, may

have a neuroprotective effect by indirectly activating FOXO3a

and Nrf2 if the regulation of pdk-1 by ZFP-1/AF10 is conserved

in animals.

Endogenous RNAi in gene expression regulation
RNAi was discovered in C. elegans as a response to exogenously

introduced dsRNA [3,49] and was considered to be primarily an

anti-viral mechanism also directed against repetitive elements [50],

especially since the first RNAi-resistant mutants did not have

obvious developmental phenotypes [3]. The discovery of mutants

in RNA-dependent RNA polymerase (RdRP) genes that displayed

developmental phenotypes [51,52] and were either RNAi-resistant

[51] or more sensitive to exogenous RNAi [52], highlighted the

possibility that RNAi may be used for regulating endogenous

genes. Indeed, endogenous siRNAs antisense to protein-coding

genes and similar to those produced during exogenous RNAi were

discovered first in the worm [15] and then in other animals [53]. It

became apparent that in mutants lacking specific endo-siRNAs,

corresponding mRNAs become upregulated [14,54,55], and

microarray and deep sequencing approaches have been used for

identifying genes that change expression in the RNAi mutants

[13,14,19,37–39,44,56–58]. However, the significance of misre-

gulation of specific genes for the biology of the worm has not been

clearly demonstrated and phenotypes described for RNAi-related

mutants [13,37,51,54–61] were not connected to specific targets

by functional epistasis experiments. This study interprets the

microarray signature of zfp-1 and rde-4 mutants, demonstrates

short lifespan and stress sensitivity phenotypes consistent with the

signature, and provides functional evidence that pdk-1 is a major

target responsible for these phenotypes through genetic epistasis,

RNA expression and ChIP analyses.

RNAi in C. elegans has the potential to cause both post-

transcriptional [49] and transcriptional [6,62] gene silencing. It is

possible that endogenous RNAi utilizes multiple mechanisms and

that some genes are subject mostly to post-transcriptional

regulation while others are regulated at the transcriptional level;

the latter are likely to have fewer matching endo-siRNAs to the

coding region and relatively more promoter-specific endo-siRNAs,

like pdk-1. We surveyed the genes upregulated in rde-4(ne299) for

an endo-siRNA signature similar to that of the pdk-1 locus and

found a number of examples (Figures S4 and S5). Interestingly,

most of these types of genes, including pdk-1, have repetitive

elements at the promoters and endo-siRNAs matching them. It

appears that a modulating effect of RDE-4 on the transcription of

some endogenous genes is linked to the control of repetitive

elements.

RNAi-dependent silencing of long terminal repeats (LTR) and

non-coding RNA genes located in euchromatic regions that

functions with trace amounts siRNAs has been described recently

in S. pombe [63]. The lack of abundant siRNA species was

remarkable, considering that Dicer and RdRP interacted physi-

cally with the loci and that LTR transcript levels were significantly

elevated in the dcr1, ago1 and rdp1 mutants. This type of RNAi-

based regulation appears to be very similar to that operating on

the pdk-1 gene in C. elegans that we describe here.

Examples of genes regulated by RNAi through repetitive

elements in promoters already exist in Arabidopsis and include the

FWA gene, which affects flowering time [64,65] and, more

recently, an extracellular peroxidase Ep5C gene [66]. High levels

of Ep5C promote susceptibility to Pseudomonas syringae and mutation

in the Argonaute 4 gene was recovered in an unbiased screen for

increased susceptibility to infection [66]. It is interesting that both

in plants and animals regulation of endogenous genes by RNAi has

evolved to promote fitness.

Materials and Methods

C. elegans mutant and transgenic strains
Strains were maintained at 20uC unless otherwise noted, using

standard methods [67]. The following mutants were used: LGI:

daf-16(mu86), daf-16(mgDf50), LGII: age-1(hx546), LGIII: daf-

2(e1370), rde-4(ne299), zfp-1(ok554), LGX: pdk-1(sa709).

Compound mutant strains and transgenes used are as follows:

CF1595: daf-16(mu86)I; daf-2(e1370)III, AGK138: zfp-1(ok554)III;

pdk-1(sa709)X, AGK241: rde-4(ne299)III; pdk-1(sa709)X, AGK25:

age-1(hx546)II; zfp-1(ok554)III, AGK264: age-1(hx546)II; rde-4

(ne299)III, AGK72: daf-16(mgDf50)I; armEx5, TJ356: zIs356 IV,

AGK30: zfp-1(ok554)III; zIs356 IV, AGK262: zfp-1(ok554)III;

zIs356 IV; pdk-1(sa709)X, AGK377: rde-4(ne299)III; zIs356 IV,

AGK 265: rde-4(ne299)III; zIs356 IV; pdk-1(sa709)X, AGK267: zfp-

1(ok554) unc-119(ed3)III; armIs5, AGK248: rde-4(ne299) zfp-1(ok554)

unc-119(ed3)III; armIs5, AGK260: zIs356 IV; pdk-1(sa709)X, SP940:

unc-52(e444)II; unc-1(e538)X; mnDp11(II;X;f).

Transgenic worms were created by microparticle bombardment

using a PDS-1000 Hepta Apparatus (Bio-Rad) [68]. All strains

were made by co-bombardment of both a fosmid of interest and

plasmid pMM016b (AddGene) for unc-119(ed3)III rescue. Strains

created are as follows: AGK29: armIs2 Is[unc-119+] – control

strain, AGK128: armIs5 Is[ZFP-1::FLAG,unc-119+], AGK26:

armEx5 Ex[ZFP-1::GFP,unc-119+].
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Recombinant fosmid construction
The WRM0629bD09 fosmid containing the ZFP-1 locus was

obtained from the C. elegans fosmid library generated by C. elegans

Reverse Genetics Core Facility, Vancouver, B.C., Canada.

http://www.lifesciences.sourcebioscience.com/clone-products/

genomic-dna-clones.aspx

We generated derivative fosmid constructs to express recombi-

nant ZFP-1 protein tagged with GFP or FLAG at the C-terminal

portion of the protein by a fosmid recombineering method as

described by [34].

Oxidative stress assays (paraquat sensitivity)
Paraquat sensitivity assays were done essentially as described by

[69]. L4 animals were transferred from NGM agar plates into 24-

well plates (10 per well) containing 300 mL of 100 mM paraquat

dissolved in M9. Worms were then incubated at 20uC and scored

for survival after 20 hours. Dead animals were scored by their

continuous absence of swimming movements and pharyngeal

pumping. A t-test between two means was used to calculate

statistical significance.

Lifespan assays
Assays were performed as described by [70]. Worms were kept

at 20uC on NGM plates (10 animals per plate). Day of hatching

was used as the first time point. Dead animals were scored as dead

when they refused to move after repeated prodding with a pick.

Animals that crawled away from the plate, exploded, or contained

internally hatched worms were excluded from the analysis. Life

spans were determined in parallel for all strains shown together on

graphs. Statistical significance was determined by a log-rank

analysis using Prizm software.

P. aeruginosa infection
C. elegans survival assays were performed as described earlier

[36]. To avoid the confounding effects of varying brood sizes,

egg laying rates and progeny hatching within the infected worms

on worm mortality, we used worms rendered sterile by RNAi of

pos-1, loss of which results in inviable embryos [71,72]. Worms

that died due to desiccation on the walls of the Petri dish or due

to bursting vulva were censored from further analysis. Statistical

analysis was performed using Kaplan-Meier non-parametric

survival analysis using the software Statview (Version 5.0.1 SAS

Institute Inc.). P,0.001 was considered significantly different

than wild type.

Analysis of the nuclear localization of DAF-16::GFP
Since the addition of the DAF-16::GFP transgene to the zfp-

1(ok554); pdk-1(sa709) double mutant strain led to a penetrant

dauer phenotype at 20uC, all DAF-16::GFP strains were

maintained at 16uC. L4 and adult stage worms were used for

scoring nuclear localization. Worms were mounted on agarose

pads and DAF-16::GFP localization was assessed in 10–20 worms

at a time using 200X magnification on a Zeiss AxioImager Z1

immediately, higher magnification images of DAF-16::GFP

localization in intestinal cells were done at 630X.

RNA extraction and RT-qPCR
Synchronous populations of animals were grown at 20uC on

NGM plates seeded with OP50 E. coli at a density of

approximately 100,000 animals per 15 cm Petri dish and

harvested at specific stages of development. The harvested animals

were washed three times with M9 buffer and the pellet was frozen

in dry ice with TRI Reagent (MRC, Inc.). After five times of freeze

and thaw, total RNA was isolated according to the TRI Reagent

protocol. Ten micrograms of the total RNA sample was digested

with 2U of Turbo DNase (Ambion) at 37uC for 1hr followed by

phenol-extraction and ethanol-precipitation. cDNA was generated

from 2 mg of total RNA, using oligo-dT primer and RevertAid

Reverse Transcriptase (Fermentas). Quantitative PCR was

performed on the Mastercycler ep realplex (Eppendorf) using the

QuantiFast SYBR Green PCR Kit (Qiagen). Thermocycling was

done for 40 cycles in a two-step cycling, according to the

manufacturer’s instructions, with 25 ml of reaction containing

12.5 ml SYBR master mix, 0.15 ml of 100 mM primers, 5 ml of

diluted cDNA, and 7.2 ml dH2O. Each PCR reaction was

performed in triplicate. We used the DDCt method to quantify

the change in mRNA expression in the mutant samples compared

to wild type and act-3 mRNA was used as a reference gene. The

primers used were as follows: Forward CACGAGACTTCTTA-

CAACTCC and Reverse GCATACGATCAGCAATTCCT for

act-3 mRNA detection, Forward AGCCATCAACACCGTC-

TAAC and Reverse CGAATTGGCGCGTGGTGC for pdk-1

mRNA detection, Forward GCTAGGATGTCAGGTGGTC and

Reverse CCAAGAGAAGCCACGAAAGC for aqp-1 mRNA

detection, Forward ATGCTCGTGCTCTTGCTGAG and Re-

verse GACTGACCGAATTGTTCTCCAT for gst-4 mRNA

detection, Forward TACCGATGAGGAGTGGGAGA and Re-

verse CGAATTCCCGAGCAAGATAA for gst-38 mRNA detec-

tion, Forward TTTCAGAATCACAGAGCAACAC and Reverse

TGCGATACATGTTCAGAAGAG for zfp-1 mRNA detection,

Forward ACACTATTAAGCGCGACTTCG and Reverse

AGTTGGCAATCTTCCAAATAGC for sod-3 mRNA detection,

Forward pdk-1 ex2-ex3 junction CCTACAGCCAGGTATTCCG

and Reverse pdk-1 intron 3 ACAAGTGGATTTTGATGGG-

TTC for detecting the mutant sa709 pdk-1 mRNA and pre-mRNA

and Reverse pdk-1 ex3-4 junction GATCACGAAATAAATTC-

TAGCCTGG-for detecting the wild-type pdk-1 mRNA.

For detection of bi-directional transcription at the pdk-1

promoter the primers used were as follows. Region 1 RT primers:

detecting (2) strand transcript CCGAGGTTATAATTTTGGC-

TAAACTT; detecting (+) strand transcript ATCAAGAGATA-

CAGCGGGAG. Region 1 PCR primers:

forward- CGGAGTTATAACCAAGCAACCA

reverse- GTGTCAACTGGATATGAATCCGAA

Region 2 RT primers: detecting (2) strand transcript CTC-

CCGCTGTATCTCTTGAT

detecting (+) strand transcript GTACGGTTGTTATCGCT-

TTCAGG.

Region 2 PCR primers: forward - GAATGTTCAAAGCCT-

TAAAGC

reverse – AGGGATAATTGGAGTGACATGG.

Chromatin immunoprecipitation (ChIP)
Chromatin immunoprecipitation was performed following the

modENCODE Protocol from the Lieb Lab with the following

modification: 2.5–3mg of cross-linked extract from L3 or adult

worms was incubated for 1h at 4uC with the specific antibody and

the immune complexes were then incubated with 60 ml IgG

Dynabeads (Invitrogen) for 1h at 4uC. DNA was cleaned up with

the Qiagen PCR purification kit. For the FLAG ChIP, we

incubated the cross-linked extract with ANTI-FLAG M2 Affinity

Gel (Sigma) for 2h at 4uC and, after the washing steps, eluted with

300 mg/ml of FLAG peptide (Sigma) for 30min at 4uC. The other

antibodies used were anti-ZFP-1 (generated by the Lieb Lab) and

anti-Pol II 8WG16 (Covance).

The immunoprecipitated DNA was quantified by qPCR using

the DDCt method to calculate the percentage of immunoprecip-
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itation relative to the input. We used the following specific primers:

Forward AAACAACACATAGACTTGTGCC and Reverse

GTACGGTTGTTATCGCTTTCAG to amplify the promoter

region of the pdk-1 gene; Forward pdk-1 ex2 GCAAGTGAATCG-

GAGAACAG and Reverse pdk-1 ex2 TGAAGAAACAT-

GAAGTGCTTGG to amplify the coding region of the pdk-1

gene; Forward TTTCAGAACTATCATGCCACG and Reverse

TCTCTGAGCACACTTTGAGG to amplify the promoter

region of the aqp-1 gene; Forward aqp-1 ex5 TTGCCAGTTATC-

CATCTCCA and Reverse aqp-1 ex5 CTCTCATCAATAA-

CAACGCAG to amplify the coding region of the aqp-1 gene;

Forward TTAGATAGAGAATTGGCGAGAG and Reverse

CAAGTAGCAAAGCGATAAACC to amplify the promoter

region of the gst-4 gene; Forward gst-4 ex4 TGAAGTTGTT-

GAACCAGCC and Reverse gst-4 ex4 CCCAAGTCAAT-

GAGTCTCCA to amplify the coding region of the gst-4 gene.

modENCODE protocols
To investigate the function of ZFP-1 with ChIP we first

developed an antibody (termed JL00006_ZFP1) to the C-terminal

portion of the protein. Alternative transcription start sites give

rise to two ZFP-1 protein isoforms with identical C-terminal

domains. As expected, both isoforms are recognized by the

JL00006_ZFP1 antibody. The protocols used for generating ZFP-

1 ChIP/chip data are described at http://www.modencode.org/

Lieb.shtml.

Determining genes bound by ZFP-1
C. elegans genes (refSeq id) from genome build CE4 (ws170) were

extracted from the UCSC genome browser’s refGene table. A

gene was called bound by ZFP-1 if the center base pair of a ZFP-1

peak overlapped the ORF or the 1,500 bp upstream region.

Overlap calls were done using the Galaxy web tool. Of the total

24,901 genes, 3,598 were bound by ZFP-1. Genome-wide

ZFP-1 localization data are available at modENCODE: http://

intermine.modencode.org/.

Supporting Information

Figure S1 Increase in pdk-1 expression correlates with suscep-

tibility to oxidative stress. (A, B) Survival of L4 larva (n = 90) from

indicated strains after 20 hour incubation period in 100mM

paraquat; ** indicates significance of P,0.01 and * - P,0.05

compared to wild type. (C) RT-qPCR detecting an increase in pdk-

1 expression in SP940, results of three biological replicas are

shown, error bars represent standard deviation.

(TIF)

Figure S2 RT-qPCR confirming enhanced expression of zfp-1

mRNA in ZFP-1::FLAG and ZFP-1::GFP transgenic strains.

(TIF)

Figure S3 ZFP-1 levels do not change in rde-4(ne299). Western

blot analysis with anti-ZFP-1 C-terminal antibody; actin levels and

Ponceau S staining of the membrane are shown as loading

controls.

(TIF)

Figure S4 An example of a gene with promoter siRNAs

matching repetitive elements and expressed higher in rde-

4(ne299) according to [19]. A screen shot from the UCSC browser

and PolII ChIP results showing enhanced occupancy in rde-

4(ne299).

(TIF)

Figure S5 Examples of genes with promoter siRNAs matching

repetitive elements and expressed higher in rde-4(ne299) according

to [19]. Screen shots from the UCSC browser.

(TIF)

Table S1 Dataset table allowing identification of overlaps

between the following datasets: microarray data listing genes

misregulated in rde-4(ne299) and zfp-1(ok554) from [19], micro-

array data of Class 1 and Class 2 genes acting downstream of daf-

16 from [23], rde-4-dependent siRNA target genes identified by

[38], and ZFP-1 target genes where the ZFP-1 peak was found in

the 1,500bp promoter window identified by ChIP/chip; functional

mount and category groups from [73].

(XLSX)

Text S1 Sequencing results for RNA sequences produced from

the pdk-1 promoter and shown in Figure 7D.

(DOC)

Acknowledgments

We thank I. Greenwald for critical reading of the manuscript; S. Palani and

D. Avgousti for helpful discussions; S. Palani, W. Gu, J. Kim, and N.

Welker for help with endo-siRNA bioinformatics; B. Tursun and L.

Cochella for technical advice on fosmid recombineering; C. Benard for

advice on longevity assays; R. Ruiz for technical assistance; D. Conte and

C. Mello for providing mutant strains. The zfp-1(ok554) strain was provided

by the C. elegans Gene Knockout Project at OMRF, which is part of the

International C. elegans Gene Knockout Consortium.

Author Contributions

Conceived and designed the experiments: AG ARM GC MBJ TK M-WT

JDL. Performed the experiments: ARM GC MBJ TK LMK VC AG.

Analyzed the data: SH MBJ ARM GC AG. Contributed reagents/

materials/analysis tools: MBJ JDL. Wrote the paper: AG.

References

1. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe.

Nat Rev Genet 10: 94–108.

2. Lau NC (2010) Small RNAs in the animal gonad: guarding genomes and

guiding development. Int J Biochem Cell Biol 42: 1334–1347.

3. Tabara H, Sarkissian M, Kelly WG, Fleenor J, Grishok A, et al. (1999) The rde-

1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99:

123–132.

4. Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G (1999) A PDK1 homolog

is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate

diapause in Caenorhabditis elegans. Genes Dev 13: 1438–1452.

5. Dudley NR, Labbe JC, Goldstein B (2002) Using RNA interference to identify

genes required for RNA interference. Proc Natl Acad Sci U S A 99: 4191–4196.

6. Grishok A, Sinskey JL, Sharp PA (2005) Transcriptional silencing of a transgene

by RNAi in the soma of C. elegans. Genes Dev 19: 683–696.

7. Kim JK, Gabel HW, Kamath RS, Tewari M, Pasquinelli A, et al. (2005)

Functional genomic analysis of RNA interference in C. elegans. Science 308:

1164–1167.

8. Chaplin T, Ayton P, Bernard OA, Saha V, Della Valle V, et al. (1995) A novel

class of zinc finger/leucine zipper genes identified from the molecular cloning of

the t(10;11) translocation in acute leukemia. Blood 85: 1435–1441.

9. Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, et al. (2005) hDOT1L links histone

methylation to leukemogenesis. Cell 121: 167–178.

10. Tabara H, Yigit E, Siomi H, Mello CC (2002) The dsRNA binding protein

RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi

in C. elegans. Cell 109: 861–871.

11. Grishok A, Sharp PA (2005) Negative regulation of nuclear divisions in

Caenorhabditis elegans by retinoblastoma and RNA interference-related genes.

Proc Natl Acad Sci U S A 102: 17360–17365.

12. Blanchard D, Parameswaran P, Lopez-Molina J, Gent J, Saynuk JF, et al. (2011)

On the nature of in vivo requirements for rde-4 in RNAi and developmental

pathways in C. elegans. RNA Biol 8.

13. Welker NC, Habig JW, Bass BL (2007) Genes misregulated in C. elegans

deficient in Dicer, RDE-4, or RDE-1 are enriched for innate immunity genes.

RNA 13: 1090–1102.

RNAi Modulates Insulin Signaling in C. elegans

PLoS Genetics | www.plosgenetics.org 14 September 2011 | Volume 7 | Issue 9 | e1002299



14. Lee RC, Hammell CM, Ambros V (2006) Interacting endogenous and

exogenous RNAi pathways in Caenorhabditis elegans. Rna 12: 589–597.

15. Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D (2003) MicroRNAs

and other tiny endogenous RNAs in C. elegans. Curr Biol 13: 807–818.

16. Pak J, Fire A (2007) Distinct populations of primary and secondary effectors
during RNAi in C. elegans. Science 315: 241–244.

17. Ruby JG, Jan C, Player C, Axtell MJ, Lee W, et al. (2006) Large-scale
sequencing reveals 21U-RNAs and additional microRNAs and endogenous

siRNAs in C. elegans. Cell 127: 1193–1207.

18. Vasale JJ, Gu W, Thivierge C, Batista PJ, Claycomb JM, et al. (2010) Sequential
rounds of RNA-dependent RNA transcription drive endogenous small-RNA

biogenesis in the ERGO-1/Argonaute pathway. Proc Natl Acad Sci U S A 107:
3582–3587.

19. Grishok A, Hoersch S, Sharp PA (2008) RNA interference and retinoblastoma-

related genes are required for repression of endogenous siRNA targets in
Caenorhabditis elegans. Proc Natl Acad Sci U S A 105: 20386–20391.

20. Cui M, Kim EB, Han M (2006) Diverse chromatin remodeling genes antagonize
the Rb-involved SynMuv pathways in C. elegans. PLoS Genet 2: e74.

doi:10.1371/journal.pgen.0020074.

21. McElwee J, Bubb K, Thomas JH (2003) Transcriptional outputs of the
Caenorhabditis elegans forkhead protein DAF-16. Aging Cell 2: 111–121.

22. McElwee JJ, Schuster E, Blanc E, Thomas JH, Gems D (2004) Shared
transcriptional signature in Caenorhabditis elegans Dauer larvae and long-lived

daf-2 mutants implicates detoxification system in longevity assurance. J Biol
Chem 279: 44533–44543.

23. Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, et al. (2003)

Genes that act downstream of DAF-16 to influence the lifespan of
Caenorhabditis elegans. Nature 424: 277–283.

24. Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: An HNF-3/forkhead
family member that can function to double the life-span of Caenorhabditis

elegans. Science 278: 1319–1322.

25. Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, et al. (1997) The Fork head
transcription factor DAF-16 transduces insulin-like metabolic and longevity

signals in C. elegans. Nature 389: 994–999.

26. Tullet JM, Hertweck M, An JH, Baker J, Hwang JY, et al. (2008) Direct

inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in

C. elegans. Cell 132: 1025–1038.

27. Lee SJ, Murphy CT, Kenyon C (2009) Glucose shortens the life span of C.

elegans by downregulating DAF-16/FOXO activity and aquaporin gene
expression. Cell Metab 10: 379–391.

28. Lee SS, Kennedy S, Tolonen AC, Ruvkun G (2003) DAF-16 target genes that

control C. elegans life-span and metabolism. Science 300: 644–647.

29. Oh SW, Mukhopadhyay A, Dixit BL, Raha T, Green MR, et al. (2006)

Identification of direct DAF-16 targets controlling longevity, metabolism and
diapause by chromatin immunoprecipitation. Nat Genet 38: 251–257.

30. Schuster E, McElwee JJ, Tullet JM, Doonan R, Matthijssens F, et al. (2010)
DamID in C. elegans reveals longevity-associated targets of DAF-16/FoxO. Mol

Syst Biol 6: 399.

31. Henderson ST, Johnson TE (2001) daf-16 integrates developmental and
environmental inputs to mediate aging in the nematode Caenorhabditis elegans.

Curr Biol 11: 1975–1980.

32. Tissenbaum HA, Ruvkun G (1998) An insulin-like signaling pathway affects

both longevity and reproduction in Caenorhabditis elegans. Genetics 148:

703–717.

33. Friedman DB, Johnson TE (1988) A mutation in the age-1 gene in

Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility.
Genetics 118: 75–86.

34. Dolphin CT, Hope IA (2006) Caenorhabditis elegans reporter fusion genes

generated by seamless modification of large genomic DNA clones. Nucleic Acids
Res 34: e72.

35. Evans EA, Kawli T, Tan MW (2008) Pseudomonas aeruginosa suppresses host
immunity by activating the DAF-2 insulin-like signaling pathway in Caenor-

habditis elegans. PLoS Pathog 4: e1000175. doi:10.1371/journal.ppat.1000175.

36. Tan MW, Mahajan-Miklos S, Ausubel FM (1999) Killing of Caenorhabditis elegans

by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc

Natl Acad Sci U S A 96: 715–720.

37. Claycomb JM, Batista PJ, Pang KM, Gu W, Vasale JJ, et al. (2009) The

Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric
chromosome segregation. Cell 139: 123–134.

38. Gu W, Shirayama M, Conte D, Jr., Vasale J, Batista PJ, et al. (2009) Distinct

argonaute-mediated 22G-RNA pathways direct genome surveillance in the C.
elegans germline. Mol Cell 36: 231–244.

39. Han T, Manoharan AP, Harkins TT, Bouffard P, Fitzpatrick C, et al. (2009)
26G endo-siRNAs regulate spermatogenic and zygotic gene expression in

Caenorhabditis elegans. Proc Natl Acad Sci U S A 106: 18674–18679.

40. Welker NC, Pavelec DM, Nix DA, Duchaine TF, Kennedy S, et al. (2010)
Dicer’s helicase domain is required for accumulation of some, but not all, C.

elegans endogenous siRNAs. RNA 16: 893–903.

41. Thierry-Mieg D, Thierry-Mieg J (2006) AceView: a comprehensive cDNA-

supported gene and transcripts annotation. Genome Biol 7(Suppl 1): S12 11–14.

42. Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI, et al. (2010)
Integrative analysis of the Caenorhabditis elegans genome by the modENCODE

project. Science 330: 1775–1787.

43. Wade JT, Struhl K (2008) The transition from transcriptional initiation to

elongation. Curr Opin Genet Dev 18: 130–136.
44. Maniar JM, Fire AZ (2011) EGO-1, a C. elegans RdRP, modulates gene

expression via production of mRNA-templated short antisense RNAs. Curr Biol

21: 449–459.
45. Kenyon CJ (2010) The genetics of ageing. Nature 464: 504–512.

46. Mojsilovic-Petrovic J, Nedelsky N, Boccitto M, Mano I, Georgiades SN, et al.
(2009) FOXO3a is broadly neuroprotective in vitro and in vivo against insults

implicated in motor neuron diseases. J Neurosci 29: 8236–8247.

47. Vargas MR, Johnson DA, Sirkis DW, Messing A, Johnson JA (2008) Nrf2
activation in astrocytes protects against neurodegeneration in mouse models of

familial amyotrophic lateral sclerosis. J Neurosci 28: 13574–13581.
48. Vanduyn N, Settivari R, Wong G, Nass R (2010) SKN-1/Nrf2 inhibits

dopamine neuron degeneration in a Caenorhabditis elegans model of
methylmercury toxicity. Toxicol Sci 118: 613–624.

49. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, et al. (1998) Potent and

specific genetic interference by double-stranded RNA in Caenorhabditis elegans.
Nature 391: 806–811.

50. Ketting RF, Haverkamp TH, van Luenen HG, Plasterk RH (1999) Mut-7 of C.
elegans, required for transposon silencing and RNA interference, is a homolog of

Werner syndrome helicase and RNaseD. Cell 99: 133–141.

51. Smardon A, Spoerke JM, Stacey SC, Klein ME, Mackin N, et al. (2000) EGO-1
is related to RNA-directed RNA polymerase and functions in germ-line

development and RNA interference in C. elegans. Curr Biol 10: 169–178.
52. Simmer F, Tijsterman M, Parrish S, Koushika SP, Nonet ML, et al. (2002) Loss

of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans
hypersensitive to RNAi. Curr Biol 12: 1317–1319.

53. Okamura K, Lai EC (2008) Endogenous small interfering RNAs in animals. Nat

Rev Mol Cell Biol 9: 673–678.
54. Duchaine TF, Wohlschlegel JA, Kennedy S, Bei Y, Conte D, Jr., et al. (2006)

Functional proteomics reveals the biochemical niche of C. elegans DCR-1 in
multiple small-RNA-mediated pathways. Cell 124: 343–354.

55. Yigit E, Batista PJ, Bei Y, Pang KM, Chen CC, et al. (2006) Analysis of the C.

elegans Argonaute family reveals that distinct Argonautes act sequentially during
RNAi. Cell 127: 747–757.

56. Asikainen S, Storvik M, Lakso M, Wong G (2007) Whole genome microarray
analysis of C. elegans rrf-3 and eri-1 mutants. FEBS Lett 581: 5050–5054.

57. Gent JI, Schvarzstein M, Villeneuve AM, Gu SG, Jantsch V, et al. (2009) A
Caenorhabditis elegans RNA-directed RNA polymerase in sperm development

and endogenous RNA interference. Genetics 183: 1297–1314.

58. Conine CC, Batista PJ, Gu W, Claycomb JM, Chaves DA, et al. (2010)
Argonautes ALG-3 and ALG-4 are required for spermatogenesis-specific 26G-

RNAs and thermotolerant sperm in Caenorhabditis elegans. Proc Natl Acad
Sci U S A 107: 3588–3593.

59. Pavelec DM, Lachowiec J, Duchaine TF, Smith HE, Kennedy S (2009)

Requirement for the ERI/DICER complex in endogenous RNA interference
and sperm development in Caenorhabditis elegans. Genetics 183: 1283–1295.

60. Rocheleau CE, Cullison K, Huang K, Bernstein Y, Spilker AC, et al. (2008) The
Caenorhabditis elegans ekl (enhancer of ksr-1 lethality) genes include putative

components of a germline small RNA pathway. Genetics 178: 1431–1443.
61. She X, Xu X, Fedotov A, Kelly WG, Maine EM (2009) Regulation of

heterochromatin assembly on unpaired chromosomes during Caenorhabditis

elegans meiosis by components of a small RNA-mediated pathway. PLoS Genet
5: e1000624. doi:10.1371/journal.pgen.1000624.

62. Guang S, Bochner AF, Burkhart KB, Burton N, Pavelec DM, et al. (2010) Small
regulatory RNAs inhibit RNA polymerase II during the elongation phase of

transcription. Nature 465: 1097–1101.

63. Woolcock KJ, Gaidatzis D, Punga T, Buhler M (2011) Dicer associates with
chromatin to repress genome activity in Schizosaccharomyces pombe. Nat

Struct Mol Biol 18: 94–99.
64. Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, et al. (2004) Role

of transposable elements in heterochromatin and epigenetic control. Nature 430:

471–476.
65. Chan SW, Zilberman D, Xie Z, Johansen LK, Carrington JC, et al. (2004) RNA

silencing genes control de novo DNA methylation. Science 303: 1336.
66. Agorio A, Vera P (2007) ARGONAUTE4 is required for resistance to

Pseudomonas syringae in Arabidopsis. Plant Cell 19: 3778–3790.
67. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94.

68. Praitis V, Casey E, Collar D, Austin J (2001) Creation of low-copy integrated

transgenic lines in Caenorhabditis elegans. Genetics 157: 1217–1226.
69. An JH, Blackwell TK (2003) SKN-1 links C. elegans mesendodermal

specification to a conserved oxidative stress response. Genes Dev 17: 1882–1893.
70. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans

mutant that lives twice as long as wild type. Nature 366: 461–464.

71. Tabara H, Hill RJ, Mello CC, Priess JR, Kohara Y (1999) pos-1 encodes a
cytoplasmic zinc-finger protein essential for germline specification in C. elegans.

Development 126: 1–11.
72. Shapira M, Tan MW (2008) Genetic analysis of Caenorhabditis elegans innate

immunity. Methods Mol Biol 415: 429–442.
73. Kim SK, Lund J, Kiraly M, Duke K, Jiang M, et al. (2001) A gene expression

map for Caenorhabditis elegans. Science 293: 2087–2092.

74. Oliveira RP, Porter Abate J, Dilks K, Landis J, Ashraf J, et al. (2009) Condition-
adapted stress and longevity gene regulation by Caenorhabditis elegans SKN-1/

Nrf. Aging Cell 8: 524–541.

RNAi Modulates Insulin Signaling in C. elegans

PLoS Genetics | www.plosgenetics.org 15 September 2011 | Volume 7 | Issue 9 | e1002299


