32 research outputs found

    The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative Digital PCR Experiments for 2020

    Get PDF
    Digital PCR (dPCR) has developed considerably since the publication of the Minimum Information for Publication of Digital PCR Experiments (dMIQE) guidelines in 2013, with advances in instrumentation, software, applications, and our understanding of its technological potential. Yet these developments also have associated challenges; data analysis steps, including threshold setting, can be difficult and preanalytical steps required to purify, concentrate, and modify nucleic acids can lead to measurement error. To assist independent corroboration of conclusions, comprehensive disclosure of all relevant experimental details is required. To support the community and reflect the growing use of dPCR, we present an update to dMIQE, dMIQE2020, including a simplified dMIQE table format to assist researchers in providing key experimental information and understanding of the associated experimental process. Adoption of dMIQE2020 by the scientific community will assist in standardizing experimental protocols, maximize efficient utilization of resources, and further enhance the impact of this powerful technology

    Navzočnost in določanje gensko spremenjenih organizmov

    Full text link

    Evaluation of DNA Extraction Methods for Reliable Quantification of <i>Acinetobacter baumannii</i>, <i>Klebsiella pneumoniae</i>, and <i>Pseudomonas aeruginosa</i>

    No full text
    Detection and quantification of DNA biomarkers relies heavily on the yield and quality of DNA obtained by extraction from different matrices. Although a large number of studies have compared the yields of different extraction methods, the repeatability and intermediate precision of these methods have been largely overlooked. In the present study, five extraction methods were evaluated, using digital PCR, to determine their efficiency in extracting DNA from three different Gram-negative bacteria in sputum samples. The performance of two automated methods (GXT NA and QuickPick genomic DNA extraction kit, using Arrow and KingFisher Duo automated systems, respectively), two manual kit-based methods (QIAamp DNA mini kit; DNeasy UltraClean microbial kit), and one manual non-kit method (CTAB), was assessed. While GXT NA extraction kit and the CTAB method have the highest DNA yield, they did not meet the strict criteria for repeatability, intermediate precision, and measurement uncertainty for all three studied bacteria. However, due to limited clinical samples, a compromise is necessary, and the GXT NA extraction kit was found to be the method of choice. The study also showed that dPCR allowed for accurate determination of extraction method repeatability, which can help standardize molecular diagnostic approaches. Additionally, the determination of absolute copy numbers facilitated the calculation of measurement uncertainty, which was found to be influenced by the DNA extraction method used

    How to Reliably Test for GMOs

    No full text
    Accurate and reliable testing is necessary to support the requirements of legislation on genetically modified organisms (GMO) defining their traceability and labelling. In this book, an overview of all key topics relevant to GMO testing is presented, including practical experience and generally accepted laboratory practices. GMO legislation, sources of information on GMOs, organization of the testing laboratory focusing on aspects of quality system and methods for testing are described. Additionally, precise information on qualitative and quantitative real-time PCR detection with special attention to critical points and important precautionary measures to assure reliable and accurate analyses are given. Special attention was given also to metrological topics, such as validation and verification of methods and measurement uncertainty. The approaches for GMO detection, which are precisely described in the present document, are also relevant for other areas where detection and identification rely on nucleic acid-based methods. Numerous diverse GMOs are coming onto the market including GMOs produced by new technologies, which are challenging established systems of analysis, therefore new developments in detection technologies and bioinformatics solutions are presented.JRC.I.4-Molecular biology and genomic

    Fast and Accurate Multiplex Identification and Quantification of Seven Genetically Modified Soybean Lines Using Six-Color Digital PCR

    No full text
    The proliferation of genetically modified organisms (GMOs) presents challenges to GMO testing laboratories and policymakers. Traditional methods, like quantitative real-time PCR (qPCR), face limitations in quantifying the increasing number of GMOs in a single sample. Digital PCR (dPCR), specifically multiplexing, offers a solution by enabling simultaneous quantification of multiple GMO targets. This study explores the use of the Naica six-color Crystal dPCR platform for quantifying five GM soybean lines within a single six-plex assay. Two four-color assays were also developed for added flexibility. These assays demonstrated high specificity, sensitivity (limit of detection or LOD < 25 copies per reaction) and precision (bias to an estimated copy number concentration <15%). Additionally, two approaches for the optimization of data analysis were implemented. By applying a limit-of-blank (LOB) correction, the limit of quantification (LOQ) and LOD could be more precisely determined. Pooling of reactions additionally lowered the LOD, with a two- to eight-fold increase in sensitivity. Real-life samples from routine testing were used to confirm the assays’ applicability for quantifying GM soybean lines in complex samples. This study showcases the potential of the six-color Crystal dPCR platform to revolutionize GMO testing, facilitating comprehensive analysis of GMOs in complex samples

    Quantitative Analysis of Food and Feed Samples with Droplet Digital PCR

    Get PDF
    <div><p>In this study, the applicability of droplet digital PCR (ddPCR) for routine analysis in food and feed samples was demonstrated with the quantification of genetically modified organisms (GMOs). Real-time quantitative polymerase chain reaction (qPCR) is currently used for quantitative molecular analysis of the presence of GMOs in products. However, its use is limited for detecting and quantifying very small numbers of DNA targets, as in some complex food and feed matrices. Using ddPCR duplex assay, we have measured the absolute numbers of MON810 transgene and <i>hmg</i> maize reference gene copies in DNA samples. Key performance parameters of the assay were determined. The ddPCR system is shown to offer precise absolute and relative quantification of targets, without the need for calibration curves. The sensitivity (five target DNA copies) of the ddPCR assay compares well with those of individual qPCR assays and of the chamber digital PCR (cdPCR) approach. It offers a dynamic range over four orders of magnitude, greater than that of cdPCR. Moreover, when compared to qPCR, the ddPCR assay showed better repeatability at low target concentrations and a greater tolerance to inhibitors. Finally, ddPCR throughput and cost are advantageous relative to those of qPCR for routine GMO quantification. It is thus concluded that ddPCR technology can be applied for routine quantification of GMOs, or any other domain where quantitative analysis of food and feed samples is needed.</p> </div

    Dynamic range of the ddPCR duplex assay.

    No full text
    <p>Five replicates for each data point. Error bars represent the standard deviation between the five replicates at each target concentration.</p
    corecore