19 research outputs found

    Headache Intervention: A Nonpharmacologic Approach to the Treatment of Tension-Type Headaches

    Get PDF
    Headaches have long been a problem for many people with hundreds of thousands seeking medical attention for their head pain each year. Migraine and tension-type are by far the most common forms of headaches, but from a physical therapy standpoint, the literature indicates that tension-type headaches respond better from the services provided by a therapist. The objective of this literature review will be to examine the different nonpharmacologic physical therapy approaches to the treatment of tension-type headaches. The techniques to be examined will include spinal manipulation, traditional physical therapy, electro acupuncture, and biofeedback and relaxation training. Examination of the literature will offer insight as to which form of treatment is most effective

    XMM−NewtonXMM-Newton Ω\Omega project: III. Gas mass fraction shape in high redshift clusters

    Full text link
    We study the gas mass fraction, f_gas,f\_{\rm gas}, behavior in XMM−NewtonXMM-Newton Ω\Omega project. The typical f_gasf\_{\rm gas} shape of high redshift galaxy clusters follows the global shape inferred at low redshift quite well. This result is consistent with the gravitational instability picture leading to self similar structures for both the dark and baryonic matter. However, the mean f_gasindistantclustersshowssomedifferencestolocalones,indicatingadeparturefromstrictscaling.Thisresultisconsistentwiththeobservedevolutionintheluminosity−temperaturerelation.Wequantitativelyinvestigatethisdeparturefromscalinglaws.Withinthelocalsampleweused,amoderatebutclearvariationoftheamplitudeofthegasmassfractionwithtemperatureisfound,atrendthatweakensintheouterregions.Thesevariationsdonotexplaindeparturefromscalinglawsofourdistantclusters.Animportantimplicationofourresultsisthatthegasfractionevolution,atestofthecosmologicalparameters,canleadtobiasedvalueswhenappliedatradiismallerthanthevirialradius.Fromourf\_{\rm gas} in distant clusters shows some differences to local ones, indicating a departure from strict scaling. This result is consistent with the observed evolution in the luminosity-temperature relation. We quantitatively investigate this departure from scaling laws. Within the local sample we used, a moderate but clear variation of the amplitude of the gas mass fraction with temperature is found, a trend that weakens in the outer regions. These variations do not explain departure from scaling laws of our distant clusters. An important implication of our results is that the gas fraction evolution, a test of the cosmological parameters, can lead to biased values when applied at radii smaller than the virial radius. From our XMM$ clusters, the apparent gas fraction at the virial radius is consistent with a non-evolving universal value in a high matter density model and not with a concordance.Comment: Accepted, A&A, in pres

    The XMM–NEWTON ℩ Project: I. The X-ray luminosity – temperature relation at z>0.4

    Get PDF
    We describe XMM-Newton Guaranteed Time observations of a sample of eight high redshift (0.45 < z < rvirial) bolometric luminosities, performed ÎČ-model fits to the radial surface profiles and made spectral fits to a single temperature isothermal model. We describe data analysis techniques that pay particular attention to background mitigation. We have also estimated temperatures and luminosities for two known clusters (Abell 2246 and RXJ1325.0-3814), and one new high redshift cluste r candidate (XMMU J084701.8 +345117), that were detected o ff-axis. Characterizing the L x − Tx relation as L x = L 6 ( T 6keV ) α , we find L 6 = 15 . 9 + 7 . 6 − 5 . 2 × 1044erg s − 1 and α =2.7 ±0.4 for an ℩ Λ = 0 . 0 , ℩ M = 1 .0, H0 = 50 km s − 1 Mpc − 1 cosmology at a typical redshift z ∌ 0 .55. Comparing with the low redshift study by Markevitch, 1998, we find α to be in agreement, and assuming L x − Tx to evolve as (1 + z ) A , we find A =0.68 ±0.26 for the same cosmology and A = 1 .52 + 0 .26 − 0 .27 for an ℩ Λ = 0 . 7 , ℩ M = 0 . 3 cosmology. Our A values are very similar to those found previously by Vikhlinin et al., 2002 using a compilation of Chandra observations of 0 .39 < z < 1 .26 clusters. We conclude that there is now evidence from both XMM-Newton and Chandra for an evolutionary trend in the L x − Tx relation. This evolution is significantly below the level expected from the predictions of the self-similar model for an ℩ Λ = 0 . 0 , ℩ M = 1 .0, cosmology, but consistent with self-similar model in an ℩ Λ = 0 . 7 , ℩ M = 0 . 3 cosmology. Our observations lend support to the robustness and completeness of the SHARC and 160SD surveys
    corecore