11,645 research outputs found

    CP violation in the lepton sector with Majorana neutrinos

    Get PDF
    We study CP violation in the lepton sector in extended models with right-handed neutrinos, without and with left-right symmetry, and with arbitrary mass terms. We find the conditions which must be satisfied by the neutrino and charged lepton mass matrices for CP conservation. These constraints, which are independent of the choice of weak basis, are proven to be also sufficient in simple cases. This invariant formulation makes apparent the necessary requirements for CP violation, as well as the size of CP violating effects. As an example, we show that CP violation can be much larger in left-right symmetric models than in models with only additional right-handed neutrinos, {\it i.e.}, without right-handed currents.Comment: 19 page

    New vector-scalar contributions to neutrinoless double beta decay and constraints on R-parity violation

    Get PDF
    We show that in minimal supersymmetric standard model (MSSM) with R-parity breaking as well as in the left-right symmetric model, there are new observable contributions to neutrinoless double beta decay arising from hitherto overlooked diagrams involving the exchange of one W boson and one scalar boson. In particular, in the case of MSSM, the present experimental bounds on neutrinoless double beta decay lifetime improves the limits on certain R-parity violating couplings by about two orders of magnitude. It is shown that similar diagrams also lead to enhanced rates for μe+\mu^-\rightarrow e^+ conversion in nuclei, which are in the range accessible to ongoing experiments.Comment: Latex file; 9 pages; 3 figures available on reques

    On Neutrino Masses and Family Replication

    Get PDF
    The old issue of why there are more than one family of quarks and leptons is reinvestigated with an eye towards the use of anomaly as a tool for constraining the number of families. It is found that, by assuming the existence of right-handed neutrinos (which would imply that neutrinos will have a mass) and a new chiral SU(2) gauge theory, strong constraints on the number of families can be obtained. In addition, a model, based on that extra SU(2), is constructed where it is natural to have one "very heavy" fourth neutrino and three almost degenerate light neutrinos whose masses are all of the Dirac type.Comment: RevTex, 12 pages with 1 figure, minor changes to the text and added acknowledgment

    Decay of polarized muon at rest as a source of polarized neutrino beam

    Get PDF
    In this paper, we indicate the theoretical possibility of using the decay of polarized muons at rest as a source of the transversely polarized electron antineutrino beam. Such a beam can be used to probe new effects beyond standard model. We mean here new tests concerning CP violation, Lorentz structure and chirality structure of the charged current weak interactions. The main goal is to show how the energy and angular distribution of the electron antineutrinos in the muon rest frame depends on the transverse components of the antineutrino beam polarization. Our analysis is model-independent and consistent with the current upper limits on the non-standard couplings. The results are presented in a limit of infinitesimally small mass for all particles produced in the decay.Comment: elsart style, 11 pages, 2 eps figures, submitted do publicatio

    Analyzing flow anisotropies with excursion sets in relativistic heavy-ion collisions

    Full text link
    We show that flow anisotropies in relativistic heavy-ion collisions can be analyzed using a certain technique of shape analysis of excursion sets recently proposed by us for CMBR fluctuations to investigate anisotropic expansion history of the universe. The technique analyzes shapes (sizes) of patches above (below) certain threshold value for transverse energy/particle number (the excursion sets) as a function of the azimuthal angle and rapidity. Modeling flow by imparting extra anisotropic momentum to the momentum distribution of particles from HIJING, we compare the resulting distributions for excursion sets at two different azimuthal angles. Angles with maximum difference in the two distributions identify the event plane, and the magnitude of difference in the two distributions relates to the magnitude of momentum anisotropy, i.e. elliptic flow.Comment: 5 pages, 4 figure

    Seesaw Right Handed Neutrino as the Sterile Neutrino for LSND

    Full text link
    We show that a double seesaw framework for neutrino masses with μτ\mu-\tau exchange symmetry can lead to one of the righthanded seesaw partners of the light neutrinos being massless. This can play the role of a light sterile neutrino, giving a 3+13+1 model that explains the LSND results. We get a very economical scheme, which makes it possible to predict the full 4×44\times 4 neutrino mass matrix if CP is conserved. Once CP violation is included, effect of the LSND mass range sterile neutrino is to eliminate the lower bound on neutrinoless double beta decay rate which exists for the three neutrino case with inverted mass hierarchy. The same strategy can also be used to generate a natural 3+23+2 model for LSND, which is also equally predictive for the CP conserving case in the limit of exact μτ\mu-\tau symmetry.Comment: 13 pages and one figure; model extended to 3+2 cas

    Lepton Flavor Violation and the Tau Neutrino Mass

    Full text link
    We point out that, in the left-right symmetric model of weak interaction, if ντ\nu_\tau mass is in the keV to MeV range, there is a strong correlation between rare decays such as τ3μ,τ3e\tau \rightarrow 3 \mu, \tau \rightarrow 3 e and the ντ\nu_\tau mass. In particular, we point out that a large range of ντ\nu_\tau masses are forbidden by the cosmological constraints on mντm_{\nu_\tau} in combination with the present upper limits on these processes.Comment: UMDHEP 94-30, 14 pages, TeX file, (some new references added
    corecore