
ar
X

iv
:h

ep
-p

h/
95

04
22

8v
1 

 4
 A

pr
 1

99
5

MADPH-95-872, UG-FT-51/95

CP violation in the lepton sector with

Majorana neutrinos

F. del Aguila1 and M. Zra lek2

1 Depto. de F́ısica Teórica y del Cosmos,
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Abstract

We study CP violation in the lepton sector in extended models

with right-handed neutrinos, without and with left-right symmetry,

and with arbitrary mass terms. We find the conditions which must

be satisfied by the neutrino and charged lepton mass matrices for CP

conservation. These constraints, which are independent of the choice

of weak basis, are proven to be also sufficient in simple cases. This

invariant formulation makes apparent the necessary requirements for

CP violation, as well as the size of CP violating effects. As an example,

we show that CP violation can be much larger in left-right symmetric

models than in models with only additional right-handed neutrinos,

i.e., without right-handed currents.
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1. Introduction

The origin of CP violation is still an open problem in particle physics.
In the standard model CP violation is related to the mixing between flavour
and mass eigenstates (Cabbibo-Kobayashi-Maskawa (CKM) mechanism) [1].
In this case three standard families of quarks with non-degenerate masses
must exist. This is known to happen, and small CP violating effects has
been observed in the K0 − K̄0 system.

Why these effects must be small is also understood. Physical quantities
are independent of the choice of (weak) quark basis. Hence, only weak basis
invariants enter in measurable quantities like cross sections or decay widths.
Two sets of CP symmetry breaking invariants have been constructed [2,3].
For three families there is only one independent invariant, which can be
chosen to be the determinant of the commutator of MuM

†
u and MdM

†
d [2],

Det[MuM
†
u,MdM

†
d ] = −2i (m2

t −m2
c)(m2

t −m2
u)(m2

c −m2
u)

(m2
b −m2

s)(m2
b −m2

d)(m2
s −m2

d) Im(VudVcsV
∗
usV

∗
cd),

(1)

where Mu(d) is the up (down) quark mass matrix in a weak current eigenstate
basis, mi is the mass of the quark i, and Vij is the ij entry of the CKM matrix;
or the trace of the triple product of the commutator [3],

Tr[MuM
†
u,MdM

†
d ]3 = 3 Det[MuM

†
u,MdM

†
d ]. (2)

As a consequence, in the standard model all CP violating effects are propor-
tional to

δKM = Im(VudVcsV
∗
usV

∗
cd). (3)

Using the unitarity of the CKM matrix we can write

|δKM | = |Im(VubVcsV
∗
usV

∗
cb)|, (4)

and substituting the experimental values of |Vij| in Eq. (4) it can be shown
that

|δKM | ≤ 10−4; (5)

and then that all CP violating effects are small [4]. This is usually summa-
rized saying that CP violation has been only observed in the K0−K̄0 system
and that it is small due to the small mixing angles |Vij| in Eq. (4).
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No CP violation has been observed in the lepton sector. This may be
related to the smallness (or vanishing) of the masses of the electron, muon
and tau neutrinos. LEP results exclude the existence of more than three
left-handed neutrinos with masses practically up to the Z0 mass. Neutrinos
with larger masses can exist and are predicted in many models beyond the
standard model. How large can CP violation be in the lepton sector with
heavy (Majorana) neutrinos has not been fully analysed to our knowledge.
Only the number of CP violating phases for different neutrino contents has
been calculated [5].

As for quarks, the construction of a set of CP violating invariants for
lepton mass matrices shall allow for:

• deciding more easily in any weak lepton basis if CP is conserved;

• understanding the origin of CP violation if for any (physical) reason a
definite (class of) model(s) is distinguished;

• motivating model building; and

• obtaining the size of CP violating effects, because all physical quanti-
ties are proportional to weak basis invariants and then, knowing a set
of neccesary and sufficient invariant constraints for CP conservation
stands for knowing the possible factors suppressing the CP violating
observables.

In this paper we discuss extended models with an arbitrary number of
right-handed neutrinos and standard lepton families, without (Section 2) and
with (Section 3) left-right symmetry,. We find necessary conditions for CP
conservation for arbitrary lepton mass matrices. These, which are indepen-
dent of the choice of weak basis, are proven to be sufficient in simple cases.
Using these invariant conditions we address the question of how large can CP
violation effects be for models with and without left-right symmetry (Sec-
tion 4). (We do not discuss other possible CP violating effects mediated by
Higgses.)

2. Extended models with right-handed neutrinos

We proceed analogously to the quark case [3]: we state the conditions for
CP conservation in the lepton sector satisfied in any weak basis, we count
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the number of CP breaking phases in a particular basis [5], and we construct
invariant conditions for CP conservation, proving in some simple cases that
these are necessary and sufficient, what constitutes our main result.

2.1. CP invariance

The gauge interactions in extended electroweak models with nR right-
handed neutrinos (and nL standard lepton families) are written in any weak
basis as in the standard model [4]:

LCC = − g√
2
ν̄Lγ

µlLW
+
µ + h.c., (6)

and

LNC = e (l̄Lγ
µlL + l̄Rγ

µlR) Aµ

+ g
2cosθW

(

−ν̄Lγ
µνL + (1 − 2sin2θW ) l̄Lγ

µlL − 2sin2θW l̄Rγ
µlR

)

Zµ,
(7)

where lL,R are two nL component vectors in flavour space describing the nL

left-handed and nL right-handed charged leptons, and νL is a nL component
vector describing the nL left-handed neutrinos. LCC,NC are left invariant by
any CP transformation

νL −→ VLCν
∗
L,

lL −→ VLCl
∗
L,

lR −→ V l
RCl

∗
R,

(8)

where VL and V l
R are nL × nL unitary matrices, and C is the Dirac charge

conjugation matrix. Similarly a general CP transformation on the right-
handed neutrinos reads

νR −→ V ν
RCν

∗
R, (9)

where V ν
R is a nR × nR unitary matrix. Then CP is conserved if there exist

transformations (8) and (9) that left invariant the mass terms [6]

Lmass = −(l̄LMllR + l̄RM
†
l lL)

−1
2
(ψ̄LMνψR + ψ̄RM

∗
νψL),

(10)

where Ml is a nL × nL complex matrix, ψL,R are nL + nR component vectors
describing the nL left-handed and nR right-handed neutrinos,

ψL =

(

νL

νc
L = iγ2ν∗R

)

, ψR =

(

νc
R = iγ2ν∗L

νR

)

,
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and Mν is a (nL + nR) × (nL + nR) complex symmetric matrix,

Mν =
nL{
nR{

(
nL
︷︸︸︷

ML

nR
︷︸︸︷

MD

MT
D MR

)

. (11)

The invariance of (10) under the transformations (8) and (9) implies

V †
LMlV

l
R = M∗

l ,

V †
LMLV

∗
L = M∗

L,

V †
LMDV

ν
R = M∗

D,
V ν T

R MRV
ν
R = M∗

R.

(12)

Thus, CP is conserved in an extended electroweak model with Dirac and
Majorana mass matrices Ml,D,ML,R if there exist (unitary) matrices VL, V

l,ν
R

satisfying (12). The converse is also true, if CP is conserved, such (unitary)
matrices do exist.

We assume that the Yukawa couplings can be related to the mass ma-
trices and that they satisfy analogous equations. This is often the case for
minimal models. We concentrate on these models, then neglecting possible
CP violating effects mediated by Higgs bosons.

2.2. Weak basis independence

Eqs. (12) are weak basis independent. In any other weak basis

ν ′L = WLνL,
l′L = WLlL,
l′R = W l

RlR,
ν ′R = W ν

RνR,

(13)

the mass matrices Ml,Mν can be written

M ′
l = WLMlW

l †
R ,

M ′
L = WLMLW

T
L ,

M ′
D = WLMDW

ν †
R ,

M ′
R = W ν ∗

R MRW
ν †
R ,

(14)
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and satisfy Eqs. (12) but with unitary matrices

V ′
L = WLVLW

T
L ,

V ′ l
R = W l

RV
l
RW

l T
R ,

V ′ ν
R = W ν

RV
ν
RW

ν T
R .

(15)

Although Eqs. (12) are the necessary and sufficient conditions for CP con-
servation, they are of little practical use. However, they suggest, as we show
below, how to construct CP invariant constraints which do not depend ex-
plicitly on the unitary matrices VL, V

l,ν
R , and are then more useful.

First, we introduce a convenient basis to parametrize CP violation. In
this basis we will prove in simple cases afterwards that the more useful CP
invariant constraints are not only necessary but sufficient.

2.3. CP conserving gauge interactions in the mass eigenstate

basis and counting of CP breaking phases in the lepton sector

Using the freedom to choose the weak basis we can assume Ml and MR

diagonal with real positive elements (see Eqs. (14)). In this basis Eqs. (12)
for Ml and MR imply (for non-degenerate charged lepton masses and non-
degenerate diagonal MR elements)

(VL)ij = (V l
R)ij = eiδiδij ,

(V ν
R )ij = eiαiδij,

(16)

where αi is equal to 0 or π (arbitrary) for non-zero (vanishing) (MR)ii. Then
Eqs. (12) for ML and MD are satisfied and CP conserved if and only if

(ML)ij = (M r
L)ij e

i 1

2
(δi+δj),

(MD)ij = (M r
D)ij e

i 1

2
(δi−αj),

(17)

with (M r
L)ij and (M r

D)ij real. Any extra phase violates CP. In order to count
the CP breaking phases, let us see how look like the CP conserving gauge
interactions in the mass eigenstate basis. In the weak basis above, if CP is
conserved (see Eqs. (17)),

Mν =

(

Σ 0

0 Π

)(

M r
L M r

D

M r T
D M r

R

)(

Σ 0

0 Π

)

, (18)
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with
Σij = ei

δi
2 δij ,

Πij = e−i
αi
2 δij ,

(19)

and M r
L,D real and M r

R = Π2MR, where MR is a diagonal matrix with real
positive elements. In the mass eigenstate basis with mi the (positive) neu-
trino masses,









m1

m2

. . .

mnL+nR









= UTMνU, (20)

where U is the unitary matrix diagonalizing Mν . For Mν in Eqs. (18,19) U
can be written

U =

(

U∗
L

UR

)

=

(

Σ∗ 0

0 Π∗

)

OΛ, (21)

where O =
(

OL

OR

)

is the real orthogonal (nL + nR) × (nL + nR) matrix diago-
nalizing

(

M r
L M r

D

M r T
D M r

R

)

= O









ǫ1m1

ǫ2m2

. . .

ǫnL+nR
mnL+nR









OT , (22)

with ǫi = 1 or −1, and Λ the diagonal matrix guaranteeing positive neutrino
masses:

Λij = δije
i π
4
(1−ǫi). (23)

Then, Eq. (6) reads in the mass eigenstate basis (calling the neutrino mass
eigenstates NL = UTψL)

LCC = − g√
2
N̄LU

†
Lγ

µlLW
+
µ + h.c.

= − g√
2
N̄LΛOT

Lγ
µΣ∗lLW

+
µ + h.c.,

(24)

where U∗
L = Σ∗OLΛ and OL above are rectangular matrices corresponding to

the first nL rows of U and O, respectively. The Σ∗ phases can be absorbed

in the charged lepton mass eigenstates defining them equal to e−i
δi
2 lLi. Thus

these phases do not violate CP because they are unphysical. The mixing of
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the charged current reduces then to the real matrix OT
L . (The Λ phases can

be associated to the neutrino eigenstate definition as we argue below.) The
neutral current lagrangian in Eq. (7) remains unchanged for the charged
lepton mass eigenstates; whereas for the neutrinos reads

LNC = − g
2cosθW

N̄LU
†
Lγ

µULNL Zµ

= − g
2cosθW

N̄LΛOT
LOLγ

µΛ∗NL Zµ.
(25)

In conclusion, the only possible complex factors in the gauge interactions are
the elements of the diagonal matrix Λ:

Λkk = 1(i) for ǫk = 1(−1). (26)

At any rate CP is conserved if we define the CP parity of the Majorana
neutrino mass eigenstate k

ηCP (k) = ǫki. (27)

In this case all Majorana neutrinos satisfy

NC ≡ CN̄T = N. (28)

Other authors prefer to get rid of the Λ phases in the lagrangian, defining the
Majorana neutrino mass eigenstates equal to Λ∗NL [7], and considering Λ∗

as creation phase factors [8]. In this case the right-hand side of Eq. (28) is
equal to −N for Majorana neutrinos with ηCP = −i. We prefer to keep (28)
generic and the i factors in the gauge interactions for Majorana neutrinos
with ηCP = −i.

If UL is of the form in Eq. (21), the gauge interactions in Eqs. (24,25)
conserve CP. Any extra phase gives rise to CP violation. Hence, the number
of CP violating phases is equal to the number of independent phases in nL

rows of a (nL + nR) × (nL + nR) unitary matrix (nL(nL + nR) − nL(nL−1)
2

)
minus the number of phases which can be absorbed in the charged lepton
mass eigenstate definition (nL) [5]:

nL(nL + nR) − nL(nL − 1)

2
− nL =

nL(nL + 2nR − 1)

2
. (29)

2.4. CP invariant constraints on the lepton mass matrices
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In this Section we derive from Eqs. (12) neccesary conditions for CP con-
servation which are independent of the weak basis and do not require to know
the unitary matrices involved in the definition of the CP transformation. If
these conditions, which are simple functions of the mass matrices, are not
satisfied, CP is violated. That they are not only necessary but sufficient has
to be proven case by case. It looks feasible (and is proven) in (the) simple(st)
cases only. This formulation provides (and we obtain) the factors suppressing
CP violating observables. Their knowledge will allow for a discussion of the
size of CP violating effects.

Motivated by Eqs. (12) and the quark case we classify the products of the
mass matrices Ml,L,D,R, as well as their sums, in three classes GL, G

l
R, G

ν
R, de-

pending under which unitary matrix VL, V
l
R, V

ν
R they transform, respectively:

V †
LGLVL = G∗

L,

V l†
R G

l
RV

l
R = Gl∗

R ,

V ν†
R Gν

RV
ν
R = Gν∗

R .

(30)

To these classes belong:

{GL} = {AL1 = MlM
†
l ;AL2 = MLM

†
L;AL3 = MDM

†
D;

ALiALj , i, j = 1, 2, 3;MLM
∗
l M

T
l M

†
L;

MLM
∗
DM

T
DM

†
L;MLM

∗
DMRM

†
D;MDM

†
RMRM

†
D;

and higher order products; and sums},
{Gl

R} = {Al = M †
l Ml;A

2
l ;M

†
l MLM

†
LMl;M

†
l MDM

†
DMl;

and higher order products; and sums},
{Gν

R} = {Aν1 = M †
DMD;Aν2 = M †

RMR;AνiAνj , i, j = 1, 2;

M †
DMLM

†
LMD;M †

DMLM
∗
DMR;M †

RM
T
DM

∗
DMR;

and higher order products; and sums}.

(31)

Now observing that the trace and the determinant of any element of these
classes is invariant under unitary transformations, and then under weak basis
transformations, and that Eqs. (30), which follow from CP conservation,
implies that these traces and determinants are real, we can write a set of
necessary conditions for CP conservation which are weak basis invariant:

ImTr(G) = 0,
ImDet(G) = 0,

(32)
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where G is any element of {GL}, {Gl
R} or {Gν

R} in Eqs. (31).
Eqs. (32) are the corner stone of our analysis. They apply to any num-

ber of standard families nL and right-handed neutrinos nR. Although these
conditions are all necessary, they are not all independent. To find a set of
conditions which are also sufficient seems to be difficult in general. We shall
obtain such a subset of necessary and sufficient CP conserving conditions for
some simple (lowest nL and nR) cases only.

We will find a set of necessary and sufficient conditions for nL + nR < 3.
In each model we state the number of CP violating phases, Eq. (29); the set
of necessary (and sufficient) CP constraints; a parametrization of Mν in the
convenient weak basis where Ml and MR are diagonal with real (and positive
Ml) elements; the expressions of the CP constraints for this parametrization;
the proof that if these invariants vanish CP is conserved (Ml and Mν can be
made real); and the expressions of these conditions as functions of physical
observables (masses and mixing angles). The cases with nL +nR = 3 are also
discussed.

• nL = 0, nR; nL = 1, nR = 0:

There is no CP violation (and, of course, no CP violating phase) in these
models.

• nL = 1, nR = 1:

In this case there is one CP violating parameter. A necessary and suffi-
cient condition for CP conservation is

∆11 = ImTr(M †
DMLM

∗
DMR) = 0. (33)

MD,L,R are one-dimensional in this model and we can write

Mν =

(

mL aeiα

aeiα mR

)

, (34)

in the convenient weak basis, which is completely specified requiring a ≥
0, α ∈ [0, π

2
). In this parametrization

∆11 = −mLmRa
2sin(2α). (35)
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The vanishing of ∆11 is apparently a sufficient condition for CP conservation:
Mν is real for a or α = 0, and it can be made real by a field redefinition for
mL or mR = 0, choosing WL = e−iα or W ν

R = eiα, respectively, in Eq. (14).
As a function of physical observables

∆11 = m1m2(m2
2 −m2

1)Im(U∗ 2
11 U

2
12). (36)

Thus, CP is conserved if there is a massless neutrino (m1 or m2 = 0), or the
neutrinos are degenerate (m1 = m2). On the other hand, any CP violating
effect is proportional to Im(U∗ 2

11 U
2
12), where U11(U12) is the element in the

mixing matrix in Eq. (24) fixing the charged coupling of the charged lepton
to the neutrino of mass m1(m2).

• nL = 2, nR = 0:

This model has deserved some attention [9]. It has one CP violating
parameter and one necessary and sufficient condition for CP conservation is

∆20 = ImDet(MLM
∗
l M

T
l M

†
L −MLM

†
LMlM

†
l ) = 0. (37)

In the basis where Ml is diagonal with charged lepton masses me, mµ and

Mν = ML =

(

a beiβ

beiβ c

)

, a, b ≥ 0, β ∈ [0,
π

2
), (38)

∆20 = −(m2
µ −m2

e)2acb2sin(2β). (39)

It is easy to prove that ∆20 = 0 is a sufficient condition for CP conservation:
Mν is real for b or β = 0, and it can be made real for a = 0; and c = 0,
choosing in Eqs. (13-15)

WL = W l
R =

(

e−iβ 0

0 1

)

; and WL = W l
R =

(

1 0

0 e−iβ

)

, (40)

respectively. ∆20 also vanishes for me = mµ, but in this case Ml can be
diagonal and WL = W l

R be still an arbitrary unitary matrix. Hence, Mν can
be made not only real but diagonal and positive by an appropriate choice of
this unitary transformation:

WLMνW
T
L =

(

m1

m2

)

, (41)
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where m1,2 are the neutrino masses. As a function of physical observables

∆20 = m1m2(m2
2 −m2

1)(m2
µ −m2

e)
2
Im(U∗ 2

11 U
2
12). (42)

Hence, CP violation requires two massive (m1,2 6= 0) and non-degenerate
(m1 6= m2) neutrinos, as well as two non-degenerate charged leptons (me 6=
mµ). As for nL = nR = 1 any CP violating effect is proportional to
Im(U∗ 2

11 U
2
12), where U11(U12) is the element in the mixing matrix in Eq.

(24) fixing the charged coupling of one charged lepton, let say e, to the neu-
trino of mass m1(m2). (Notice that Im(U∗ 2

11 U
2
12) = Im(U∗ 2

21 U
2
22).)

• nL + nR ≥ 3:

There are two CP violating phases for nL = 1, nR = 2. Two necessary
and sufficient conditions for CP conservation are

∆
(1)
12 = ImTr(M †

DMLM
∗
DMR) = 0,

∆
(2)
12 = ImDet(M †

RM
T
DM

∗
DMR −M †

DMDM
†
RMR) = 0.

(43)

There are three CP violating phases for nL = 2, nR = 1. It can be proved,
after some work, that

∆
(1)
21 = ImDet(MLM

∗
l M

T
l M

†
L −MLM

†
LMlM

†
l ) = 0,

∆
(2)
21 = ImDet(MDM

†
DMLM

†
L −MLM

∗
DM

T
DM

†
L) = 0,

∆
(3)
21 = ImDet(MDM

†
DMlM

†
l −MLM

∗
DM

T
DM

†
L) = 0,

∆
(4)
21 = ImDet(MDM

†
DMlM

†
l −MlM

†
l MLM

†
L) = 0,

∆
(5)
21 = ImDet(MLM

∗
l M

T
l M

†
L −MDM

†
DMlM

†
l ) = 0,

∆
(6)
21 = ImTr(M †

DMLM
∗
DMR) = 0,

∆
(7)
21 = ImTr(MlM

†
l MDM

∗
RM

T
DM

∗
l M

T
l M

†
L) = 0,

∆
(8)
21 = ImTr((MlM

†
l )2MDM

∗
RM

T
D(M∗

l M
T
l )2M †

L) = 0,

(44)

form a set of necessary and sufficient conditions for CP conservation.
For nL = 3, nR = 0, although there are three CP breaking phases as for

nL = 2, nR = 1, it seems difficult to find a subset of sufficient conditions for
CP conservation. Analogously to the quark case [3] the obstacle, which is
generic for large(r) nL, nR, is the non-linearity of conditions (32) on the CP
breaking phases. We expect to handle this case, as well as the models with
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nL = nR = 2, 3, with a computer.

3. Extended models with left-right symmetry

The analysis of left-right models parallels the analysis of extended mod-
els with extra right-handed neutrinos only. The number of left-handed and
right-handed neutrinos is now the same nL = nR = n. There are also extra
charged and neutral currents which further constrain the CP transformations.

3.1. CP invariance

The gauge interactions can be written in this case [10]:

LCC = − g√
2

(ν̄Lγ
µlLW

+
Lµ + κν̄Rγ

µlRW
+
Rµ) + h.c., (45)

and

LNC = e (l̄Lγ
µlL + l̄Rγ

µlR) Aµ

+ g
2cosθW

(

−ν̄Lγ
µνL + (1 − 2sin2θW ) l̄Lγ

µlL − 2sin2θW l̄Rγ
µlR

)

Zµ

− e
2cosθW

1
α

(ν̄Lγ
µνL + (1 + α2)ν̄Rγ

µνR + l̄Lγ
µlL + (1 − α2)l̄Rγ

µlR) ZLR µ,

(46)
with α =

√
κ2cot2θW − 1 real. W±

L,R are the charged gauge bosons associated
to SU(2)L,R; and Z,ZL,R are the two heavy neutral gauge bosons associ-
ated to the standard model and its left-right (LR) extension, respectively.
Whereas lL,R and νL,R are nL = nR component vectors in flavour space de-
scribing left-, right-handed charged leptons and left-, right-handed neutrinos.
LCC,NC are now left invariant by any CP transformation

νL −→ VLCν
∗
L,

lL −→ VLCl
∗
L,

lR −→ VRCl
∗
R,

νR −→ VRCν
∗
R,

(47)

where VL,R are n×n unitary matrices. On the other hand, the mass matrices
Ml,L,D,R are all n × n. The invariance of the mass terms in Eq. (10) under
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the CP transformations in Eq. (47) implies

V †
LMlVR = M∗

l ,

V †
LMLV

∗
L = M∗

L,

V †
LMDVR = M∗

D,
V T

R MRVR = M∗
R.

(48)

These conditions are necessary and sufficient for CP conservation in left-right
symmetric models.

3.2. Weak basis independence

As before conditions (48) are weak basis independent: Eqs. (13-15) apply
but with W l

R = W ν
R = WR, V

l
R = V ν

R = VR and V ′ l
R = V ′ ν

R = V ′
R.

3.3. CP conserving gauge interactions in the mass eigenstate

basis and counting of CP breaking phases in the lepton sector

The freedom to choose the weak basis allows to assume that Ml is diago-
nal. In this basis Eq. (48) for Ml (for non-degenerate charged lepton masses)
implies

(VL)ij = (VR)ij = eiδiδij . (49)

Then Eqs. (48) for ML,D,R are satisfied and CP conserved if and only if

(ML)ij = (M r
L)ij e

i 1

2
(δi+δj),

(MD)ij = (M r
D)ij e

i 1

2
(δi−δj),

(MR)ij = (M r
R)ij e

−i 1

2
(δi+δj),

(50)

with (M r
L,D,R)ij real. The number of possible CP violating phases is larger

in left-right models because the definition of a CP transformation is less
general. To write the CP conserving gauge interactions for left-right models
in the mass eigenstate basis, we follow the same steps as in Section 2.3. Now
(Π = Σ∗) [11]

U =

(

Σ∗ 0

0 Σ

)

OΛ, (51)

and

LCC = − g√
2
(N̄LU

†
Lγ

µlLW
+
L µ + κN̄RU

†
Rγ

µlRW
+
R µ) + h.c.

= − g√
2
(N̄LΛOT

Lγ
µΣ∗lLW

+
L µ + κN̄RΛ∗OT

Rγ
µΣ∗lRW

+
R µ) + h.c.,

(52)
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where NL,R = UTψL,R are the neutrino mass eigenstates. As in Eq. (24) the
Σ∗ phases can be absorbed in the charged lepton mass eigenstates defining

then equal to e−i
δi
2 lL,R i. The neutral current lagrangian in Eq. (46) remains

unchanged for the charged lepton mass eigenstates; whereas for the neutrinos
can be written

LNC = − g
2cosθW

N̄LU
†
Lγ

µULNLZµ

− e
2cosθW

1
α

(N̄LU
†
Lγ

µULNL + (1 + α2)N̄RU
†
Rγ

µURNR)ZLR µ

= − g
2cosθW

N̄LΛOT
LOLγ

µΛ∗NLZµ

− e
2cosθW

1
α

(N̄LΛOT
LOLγ

µΛ∗NL + (1 + α2)N̄RΛ∗OT
RORγ

µΛNR)ZLR µ.

(53)

The number of possible CP violating phases in LCC,NC (Eqs. (52,53))

for a general 2n × 2n unitary matrix U =
(

U∗

L
UR

)

is equal to the number of

independent phases in U (2n(2n+1)
2

) minus the number of phases which can
be absorbed in the charged lepton mass eigenstate definition (n) [5]:

n(2n + 1) − n = 2n2. (54)

3.4. CP invariant constraints on the lepton mass matrices

As in Section 2.4. we shall derive necessary conditions for CP conservation
which are independent of the weak basis and do not require to know the
unitary matrices involved in the definition of the CP transformation. That
a subset of them is also sufficient has to be proven case by case.

The products of the mass matrices Ml,L,D,R, as well as their sums, can be
classified in two classes GL,R, which under VL,R transform, respectively:

V †
LGLVL = G∗

L,

V †
RGRVR = G∗

R.
(55)

To these classes belong:

{GL} = {AL1 = MlM
†
l ;AL2 = MLM

†
L;AL3 = MDM

†
D;

AL4 = MlM
†
D;AL5 = MDM

†
l ;ALiALj ,

i, j = 1, 2, ..., 5;BiB
†
j , i, j = 1, 2, ..., 4;

and higher order products; and sums},
{GR} = {AR1 = M †

l Ml;AR2 = M †
DMD;AR3 = M †

RMR;

AR4 = M †
l MD;AR5 = M †

DMl;ARiARj ,
i, j = 1, 2, ..., 5;BT

i B
∗
j , i, j = 1, 2, ..., 4;

and higher order products; and sums},

(56)
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where B1 = MlM
†
R; B2 = MLM

∗
l ; B3 = MLM

∗
D; B4 = MDM

†
R. As before,

Eqs. (32) but with G any element of {GL} or {GR} in Eq. (56), are a set
of necessary conditions for CP conservation which are weak basis invariant.
They follow from Eqs. (55) and the invariance of the trace and the deter-
minant under unitary transformations. We shall obtain a subset of sufficient
conditions for n = 1. For n = 2 there are eight CP violating phases. A
set of necessary and sufficient conditions will include the constraints in Eqs.
(43,44) and many more, requiring its analysis a long casuistry. Besides, for
larger n there is the same difficulty to find a subset of sufficient constraints
as for extended models with only extra right-handed neutrinos: conditions
(32) are non-linear on the CP breaking phases. We expect to handle these
cases with the help of a computer.

• n = 1:

There are two CP violating parameters in this case (which is the simplest
one). Two necessary and sufficient conditions for CP conservation are

∆
(1)
1 = ImTr(MlM

†
D) = 0,

∆
(2)
1 = ImTr(MlM

†
RM

T
l M

†
L −MLM

∗
DMRM

†
D) = 0.

(57)

The neutrino mass matrix can be written in the convenient weak basis where
Ml,L, which are one-dimensional, are real and Ml is also positive

Mν =

(

mL aeiα

aeiα mReiφ

)

, a ≥ 0, α, φ ∈ [0, π). (58)

In this parametrization

∆
(1)
1 = −measin(α),

∆
(2)
1 = −mLmR(m2

esin(φ) + a2sin(φ− 2α)),
(59)

with me the charged lepton mass. The vanishing of ∆
(1,2)
1 is sufficient for CP

conservation: Mν is real for a,mR = 0; α,mR = 0; and α, φ = 0, and it can
be made real by a field redefinition for me, a = 0 or me = 0, φ− 2α = 0,−π;

mL, a = 0 or mL, α = 0; me, mL = 0; and me, mR = 0, choosing WR = ei
φ
2 ;

WL = WR = ei
φ
2 ; WL = ei(φ

2
−α), WR = ei

φ
2 ; and WR = eiα, respectively. As

16



a function of physical observables

∆
(1)
1 = meIm(m1U11U21 +m2U12U22),

∆
(2)
1 = m2

eIm((m1U
2
11 +m2U

2
12)(m1U

2
21 +m2U

2
22))

−m1m2(m2
2 −m2

1)Im(U∗ 2
11 U

2
12),

(60)

where m1,2 are the neutrino masses and Uij are the U =
(

U∗

L
UR

)

matrix ele-

ments fixing the charged coupling of the left- (right-) handed charged lepton
i = 1(2) to the neutrino of mass mj (see Eq. (52)). This model has two (in-
dependent) physical phases, which we associate to P = m1U11U21+m2U12U22

and Q = (m1U
2
11 +m2U

2
12)(m1U

2
21 +m2U

2
22) in Eq. (60), respectively. Then,

any CP violating effect can be written as a function of P and/or Q. In par-

ticular, the second term of ∆
(2)
1 in (60) is equal to −Im(P 2Q∗).

4. CP violating effects and conclusions

In this paper we study the formulation of CP violation in the lepton
sector in extended models with right-handed neutrinos, without and with
left-right symmetry. We obtain necessary conditions for CP conservation for
any number of standard families nL and right-handed neutrinos nR (in left-
right symmetric models nL = nR = n). These are independent of the weak
basis used to express the charged lepton and the neutrino mass matrices.
However, they are not all independent, and in general it appears difficult
to find a subset of sufficient conditions . Proceeding case by case we do
find such a set of necessary and sufficient conditions for the simplest cases
(lowest nL, nR): nL = 0, nR; nL = 1, nR = 0; nL = 1, nR = 1; nL = 2, nR =
0; nL = 1, nR = 2; nL = 2, nR = 1, and n = 1. The proof takes profit
of the freedom to choose the weak basis. This is fixed requiring that the
charged lepton mass matrix be diagonal with real positive eigenvalues and
the neutrino mass matrix have as many diagonal blocks and real (positive)
diagonal elements as possible. For cases with larger nL, nR we have to rely
on a computer.

This invariant formulation allows for deciding more easily if CP is con-
served because the CP conserving constraints can be simply calculated in
any weak basis. It may also help to understand the origin of CP violation if
a pattern of leptonic mass matrices is distinguished for some physical reason.
It can be used as a guide for model buildig. However, the main practical
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application of constructing such a set of necessary and sufficient conditions
for CP conservation follows from observing that any CP violating effect is
proportional to weak basis invariants, and then to the invariant factors ap-
pearing in these constraints. This permits to discuss the possible suppression
factors and then the size of the CP violating observables.

As an example we can compare the cases nL = nR = 1, without, and
n = 1, with left-right symmetry. CP is violated for nL = nR = 1 if and only
if (see Section 2.4)

Im((m1U11U21 +m2U12U22)2((m1U
2
11 +m2U

2
12)(m1U

2
21 +m2U

2
22))∗) 6= 0,

and for n = 1 if and only if (see Section 3.4)

meIm(m1U11U21 +m2U12U22) 6= 0, and/or

m2
eIm((m1U

2
11+m2U

2
12)(m1U

2
21+m2U

2
22))−m1m2(m2

2−m2
1)Im(U∗ 2

11 U
2
12) 6= 0.

Therefore, CP violation can be larger in left-right models because any CP
violating effect in the presence of right-handed currents is a function of P =
m1U11U21+m2U12U22 and/or Q = (m1U

2
11+m2U

2
12)(m1U

2
21+m2U

2
22); whereas

a CP violating observable in their absence is a function of the product P 2Q∗

only, whose imaginary part above is equal to m1m2(m2
2 −m2

1)Im(U∗ 2
11 U

2
12).

This is generic. In left-right models CP can be violated in left-handed as
well as in right-handed currents. That CP violation can be larger in left-
right models can be seen when producing two heavy neutrinos N1N2 at e+e−

[11].
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