8,512 research outputs found

    Near-universal hospitalization of US emergency department patients with cancer and febrile neutropenia

    Get PDF
    IMPORTANCE: Febrile neutropenia (FN) is the most common oncologic emergency and is among the most deadly. Guidelines recommend risk stratification and outpatient management of both pediatric and adult FN patients deemed to be at low risk of complications or mortality, but our prior single-center research demonstrated that the vast majority (95%) are hospitalized. OBJECTIVE: From a nationwide perspective, to determine the proportion of cancer patients of all ages hospitalized after an emergency department (ED) visit for FN, and to analyze variability in hospitalization rates. Our a priori hypothesis was that >90% of US cancer-associated ED FN visits would end in hospitalization. DESIGN: Analysis of data from the Nationwide Emergency Department Sample, 2006-2014. SETTING: Stratified probability sample of all US ED visits. PARTICIPANTS: Inclusion criteria were: (1) Clinical Classification Software code indicating cancer, (2) diagnostic code indicating fever, and (3) diagnostic code indicating neutropenia. We excluded visits ending in transfer. EXPOSURE: The hospital at which the visit took place. MAIN OUTCOMES AND MEASURES: Our main outcome is the proportion of ED FN visits ending in hospitalization, with an a priori hypothesis of >90%. Our secondary outcomes are: (a) hospitalization rates among subsets, and (b) proportion of variability in the hospitalization rate attributable to which hospital the patient visited, as measured by the intra-class correlation coefficient (ICC). RESULTS: Of 348,868 visits selected to be representative of all US ED visits, 94% ended in hospitalization (95% Confidence Interval [CI] 93-94%). Each additional decade of age conferred 1.23x increased odds of hospitalization. Those with private (92%), self-pay (92%), and other (93%) insurance were less likely to be hospitalized than those with public insurance (95%, odds ratios [OR] 0.74-0.76). Hospitalization was least likely at non-metropolitan hospitals (84%, OR 0.15 relative to metropolitan teaching hospitals), and was also less likely at metropolitan non-teaching hospitals (94%, OR 0.64 relative to metropolitan teaching hospitals). The ICC adjusted for hospital random effects and patient and hospital characteristics was 26% (95%CI 23-29%), indicating that 26% of the variability in hospitalization rate was attributable to which hospital the patient visited. CONCLUSIONS AND RELEVANCE: Nearly all cancer-associated ED FN visits in the US end in hospitalization. Inter-hospital variation in hospitalization practices explains 26% of the limited variability in hospitalization decisions. Simple, objective tools are needed to improve risk stratification for ED FN patients

    Quantum-limited estimation of the axial separation of two incoherent point sources

    Get PDF
    Improving axial resolution is crucial for three-dimensional optical imaging systems. Here we present a scheme of axial superresolution for two incoherent point sources based on spatial mode demultiplexing. A radial mode sorter is used to losslessly decompose the optical fields into a radial mode basis set to extract the phase information associated with the axial positions of the point sources. We show theoretically and experimentally that, in the limit of a zero axial separation, our scheme allows for reaching the quantum Cram\'er-Rao lower bound and thus can be considered as one of the optimal measurement methods. Unlike other superresolution schemes, this scheme does not require neither activation of fluorophores nor sophisticated stabilization control. Moreover, it is applicable to the localization of a single point source in the axial direction. Our demonstration can be useful to a variety of applications such as far-field fluorescence microscopy.Comment: Comments are welcom

    Performance analysis of d-dimensional quantum cryptography under state-dependent diffraction

    Get PDF
    Standard protocols for quantum key distribution (QKD) require that the sender be able to transmit in two or more mutually unbiased bases. Here, we analyze the extent to which the performance of QKD is degraded by diffraction effects that become relevant for long propagation distances and limited sizes of apertures. In such a scenario, different states experience different amounts of diffraction, leading to state-dependent loss and phase acquisition, causing an increased error rate and security loophole at the receiver. To solve this problem, we propose a pre-compensation protocol based on pre-shaping the transverse structure of quantum states. We demonstrate, both theoretically and experimentally, that when performing QKD over a link with known, symbol-dependent loss and phase shift, the performance of QKD will be better if we intentionally increase the loss of certain symbols to make the loss and phase shift of all states same. Our results show that the pre-compensated protocol can significantly reduce the error rate induced by state-dependent diffraction and thereby improve the secure key rate of QKD systems without sacrificing the security.Comment: 10 pages, 6 figure

    Fermions and bosons in nonsymmorphic PdSb2 with sixfold degeneracy

    Get PDF
    PdSb2 is a candidate for hosting 6-fold-degenerate exotic fermions (beyond Dirac and Weyl fermions).The nontrivial band crossing protected by the nonsymmorphic symmetry plays a crucial role in physical properties. We have grown high-quality single crystals of PdSb2 and characterized their physical properties under several stimuli (temperature, magnetic field, and pressure). While it is a diamagnetic Fermi-liquid metal under ambient pressure, PdSb2 exhibits a large magnetoresistance with continuous increase up to 14 T, which follows the Kohler's scaling law at all temperatures. This implies one-band electrical transport, although multiple bands are predicted by first principles calculations. By applying magnetic field along the [111] direction, de Haas-van Alphen oscillations are observed with frequency of 102 T. The effective mass is nearly zero (0.045m0) with the Berry phase close to {\pi}, confirming that the band close to the R point has a nontrivial character. Under quasihydrostatic pressure (p), evidence for superconductivity is observed in the resistivity below the critical temperature Tc. The dome-shaped Tc versus p is obtained with maximum Tc~2.9 K. We argue that the formation of Cooper pairs (bosons) is the consequence of the redistribution of the 6-fold-degenerate fermions under pressure

    A Study of the Air Quality in Underground Car Parks with Emphasis on Carbon Monoxide and Airborne Lead

    Get PDF
    The concentrations of carbon monoxide and airborne lead in three enclosed underground car parks in Kuala Lumpur were measured simultaneously with traffic flow for a period of three months. The measurements were taken at a height of 1. 5 m from the ground for a duration of8 - 13 hours. A large variation in the airborne lead levels was observed which ranged from 1.75 to 23.9 J1g/m 3 in relation to traffic flow. The mean carbon monoxide concentration ranged from 23.2 to 65.2 ppm. The mean concentration of both pollutants at all the three sites was found to exceed the proposed Malaysian Air Quality Standard of 0.7 J1g/m 3 for lead and 9 ppm (8 hours average) for carbon monoxide. A positive correlation was observed between traffic flow and carbon monoxide as well as lead at the locations studied

    Effect of membrane performance including fouling on cost optimization in brackish water desalination process

    Get PDF
    Membrane selection is a crucial step that will affect the economic feasibility of the membrane water treatment process. A comprehensive evaluation consisting of Verberne Cost Model, assessment of membrane performance and fouling propensity, osmotic pressure differential (OPD) and specific energy consumption (SEC) was employed to determine the potential of nanofiltration (NF 270, NF 90 and TS 80) and low pressure reverse osmosis (XLE) membranes to be used in brackish water desalination process. The aim was to save costs by replacing the typical brackish water reverse osmosis (BW 30) membrane. Verberne Cost Model showed that higher flux NF membranes resulted in lower overall costs. However, after assessing the membrane performance, NF 270 and TS 80 were excluded due to their high fouling propensity and their failure to reduce total dissolved solids (TDS) in the solution. Instead, NF 90 membrane which produced water with acceptable TDS and has moderate permeability ended up to be more cost competitive compared to BW 30 membrane, with 17%-21% lower total costs and 13%-17% lower water costs. Apart from this, OPD and SEC were applied to justify the selection of optimal membrane recovery rate based on the water costs calculated. It was determined that the optimal recovery rate was 80% where the SEC and water costs were close to available water treatment plants. Overall, this study showed that the selection of membrane can be carried out by using Verberne Cost Model assisted by assessment of membrane performance and fouling propensity, OPD and SEC

    Chitosan as natural coagulant in hybrid coagulation-nanofiltration membrane process for water treatment

    Get PDF
    Water treatment industries are exploring the possibility to use environmental friendly chemicals and to discover the potential of advanced treatment technology in order to achieve sustainable development. Hybrid coagulation-membrane process has been introduced and proven to be a reliable water treatment process. In this study, the potential of chitosan as natural coagulant in hybrid coagulation-NF membrane process was studied. Three synthetic humic acid (HA) solutions with different ionic strength and composition will be used; without salt (Set 1), with NaCl only (Set 2), and with NaCl, CaCl2, and NaHCO3 (Set 3). Our findings indicated that gradual flux decline for Set 1 can be related to the continuous accumulation of neutral charged particles (pH 4.2) on the membrane surface. Formation of compact foulant layer due to further charge suppression of the foulants by dissolved ions (Set 2) resulted in severe membrane flux decline. When the pH of Set 1 and Set 2 supernatant solutions were increased to 7, fouling has been resolved due to the presence of strong electrostatic repulsion between the foulants and membrane. During the initial filtration process for Set 3, the flux has remained constant due to the strong repulsion between negatively charged foulants and membrane (pH 7). It was followed by severe flux decline which could be attributed to the effect of concentration polarization. Hence, this study highlighted that the impact of natural coagulant on the membrane process should be systematically studied in order to prevent unnecessary loss due to the incompatibility between both processes.This paper was made possible by NPRP grant #[5-1425-2-607] from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the author[s]. The authors also wish to acknowledge the Ministry of Education Malaysia for sponsoring W.L. Ang?s postgraduate study via MyBrain.Scopu

    Effect of alendronate on post-traumatic osteoarthritis induced by anterior cruciate ligament rupture in mice.

    Get PDF
    IntroductionPrevious studies in animal models of osteoarthritis suggest that alendronate (ALN) has antiresorptive and chondroprotective effects, and can reduce osteophyte formation. However, these studies used non-physiologic injury methods, and did not investigate early time points during which bone is rapidly remodeled prior to cartilage degeneration. The current study utilized a non-invasive model of knee injury in mice to investigate the effect of ALN treatment on subchondral bone changes, articular cartilage degeneration, and osteophyte formation following injury.MethodsNon-invasive knee injury via tibial compression overload or sham injury was performed on a total of 90 mice. Mice were treated with twice weekly subcutaneous injections of low-dose ALN (40 μg/kg/dose), high-dose ALN (1,000 μg/kg/dose), or vehicle, starting immediately after injury until sacrifice at 7, 14 or 56 days. Trabecular bone of the femoral epiphysis, subchondral cortical bone, and osteophyte volume were quantified using micro-computed tomography (μCT). Whole-joint histology was performed at all time points to analyze articular cartilage and joint degeneration. Blood was collected at sacrifice, and serum was analyzed for biomarkers of bone formation and resorption.ResultsμCT analysis revealed significant loss of trabecular bone from the femoral epiphysis 7 and 14 days post-injury, which was effectively prevented by high-dose ALN treatment. High-dose ALN treatment was also able to reduce subchondral bone thickening 56 days post-injury, and was able to partially preserve articular cartilage 14 days post-injury. However, ALN treatment was not able to reduce osteophyte formation at 56 days post-injury, nor was it able to prevent articular cartilage and joint degeneration at this time point. Analysis of serum biomarkers revealed an increase in bone resorption at 7 and 14 days post-injury, with no change in bone formation at any time points.ConclusionsHigh-dose ALN treatment was able to prevent early trabecular bone loss and cartilage degeneration following non-invasive knee injury, but was not able to mitigate long-term joint degeneration. These data contribute to understanding the effect of bisphosphonates on the development of osteoarthritis, and may support the use of anti-resorptive drugs to prevent joint degeneration following injury, although further investigation is warranted

    Damage identification in a concrete beam using curvature difference ratio

    Get PDF
    Previous studies utilising changes in mode shape or curvature to locate damage rely on the fact that the greatest change occurs around the defect. However, in concrete beams this fact is undermined due to the nature of the defect as distributed multi-site cracks. In addition, differences in mode shape and curvature as ways to locate the damage is unstable because of occurrence of modal nodes and inflection points. In this paper, one interesting solution to this problem is being tested by establishing a new non-dimensional expression designated the 'Curvature Difference Ratio (CDR)'. This parameter exploits the ratio of differences in curvature of a specific mode shape for a damaged stage and another reference stage. The expression CDR is reasonably used to locate the damage and estimate the dynamic bending stiffness in a successively loaded 6m concrete beam. Results obtained by the proposed technique are tested and validated with a case study results done by Ren and De Roeck [1] also by Maeck and De Roeck [2]. Another contribution of this work is that relating changes in vibration properties to the design bending moment at beam sections as defined in Eurocode 2 specifications [3]. Linking between a beam section condition and the change in vibration data will help to give a better comprehension on the beam condition than the applied load
    corecore