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Improving axial resolution is crucial for three-dimensional optical imaging systems. Here we present a
scheme of axial superresolution for two incoherent point sources based on spatial mode demultiplexing.
A radial mode sorter is used to losslessly decompose the optical fields into a radial mode basis set
to extract the phase information associated with the axial positions of the point sources. We show
theoretically and experimentally that, in the limit of a zero axial separation, our scheme allows for
reaching the quantum Cramér-Rao lower bound and thus can be considered as one of the optimal
measurement methods. Unlike other superresolution schemes, this scheme does not require neither
activation of fluorophores nor sophisticated stabilization control. Moreover, it is applicable to the
localization of a single point source in the axial direction. Our demonstration can be useful to a variety
of applications such as far-field fluorescence microscopy. © 2019 Optical Society of America under the
terms of the OSA Open Access Publishing Agreement
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1. INTRODUCTION

Optical microscopy is one of the most important imaging modalities
and has been broadly applied in various areas. One crucial metric
for an optical microscope is the spatial resolution, which is typically
constrained by the diffraction limit, and the Rayleigh criterion is pro-
posed as the resolution limit of an incoherent imaging system [1–3].
In recent decades, various methods have been proposed to surpass the
diffraction limit. In fluorescence microscopy, a widely used approach
is to activate each fluorescence molecule individually, and therefore the
overlap between neighboring molecules is avoided and the localization

precision can be improved to tens of nanometers [4–6]. This technique
usually requires specially prepared samples, and the reconstruction
of an image can take a long time due to the sophisticated activation
and detection of individual fluorophores. Another superresolution tech-
nique is based on decomposing the optical field into the linear prolate
spheroidal functions, i.e. the eigenfunctions of aperture in a coherent
imaging system [7–9]. It is shown that the ultimate limit of resolution
of a coherent imaging system is not determined by diffraction but by
the signal-to-noise ratio of the measurement. Therefore, a sufficiently
large number of photons are needed to enable the superresolution. In
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addition, this technique, including other approaches that require non-
classical light sources [10–15], cannot be readily applied to incoherent
superresolution imaging considered here. While many other methods
have been proposed to realize axial super-localization [16], such as
interferometric microscope [17–20], point spread function (PSF) en-
gineering [21–26], and multi-plane detection [27–30], these advances
can be only used to precisely measure the axial location of a single
point source, and it remains a challenge to determine a small axial
separation when two incoherent, simultaneously emitting point sources
overlap with each other.

To develop an efficient axial superresolution technique, we fol-
low the procedure in Ref. [31] and formulate the estimation of axial
separation in the context of quantum metrology [32–36]. The preci-
sion of a measurement method is typically quantified by the Fisher
information, and the reciprocal of Fisher information is referred to
as the Cramér-Rao lower bound (CRLB) and characterizes the lower
bound of measurement variance for an unbiased estimator [37, 38].
To determine the axial location of point sources, the easiest and most
commonly used approach, which we refer to as direct imaging method,
is to measure the size of the PSF in the image plane and then deduce
the axial positions accordingly. However, our calculation in the next
section shows that the corresponding Fisher information drops to zero
when the axial separation of two incoherent point sources gets close
to zero. This result is not surprising because the size of PSF changes
slowly when point sources are almost on focus. Nonetheless, a fur-
ther calculation shows that the quantum Fisher information does not
vanish for an arbitrarily small axial separation. The quantum Fisher
information is the upper limit of the Fisher information that cannot
be exceeded by any possible types of measurement as derived in the
quantum metrology theory and can be used to quantify the maximum
possible amount of information that can be obtained by a measurement.
Given a non-vanishing quantum Fisher information, there should exist
a type of measurement that can outperform the direct imaging method
and extract the maximum possible amount of information from each
photon.

In the following sections we demonstrate both theoretically and
experimentally that the axial superresolution can be achieved at the
single-photon level by a radial mode sorter. This radial mode sorter
can losslessly project the incident photons into the radial Laguerre-
Gaussian basis set. With the same amount of photons, our scheme
based on the radial mode sorter can estimate the axial separation with
smaller bias and standard deviation. We note that similar strategies
have been studied for transverse superresolution [39–48], which are
based on a Hermite-Gaussian mode sorter [40, 49] or mode parity
decomposition [41, 42]. However, we emphasize that our radial mode
sorter comes from very recent advances in spatial mode sorter [50–52]
and cannot be simply realized by mode parity decomposition. Fur-
thermore, while homodyne or heterodyne detection [12, 39] provides
an easier way to implement the spatial mode projective measurement,
the shot noise from reference beam fundamentally deteriorates the
signal-to-noise ratio, and it has been shown that homodyne or hetero-
dyne detection cannot even outperform direct imaging method when
the available photon number is small [53]. Moreover, the mode sorter
does not require any active components, such as the local oscillator in
heterodyne detection, and thus is more favorable in an experiment.

2. THEORY

The conceptual diagram for direct imaging method and sorter-based
measurement is shown in Fig. 1. The direct imaging method employs
an objective to collect photons and then use a tube lens to form an
image of the object as shown in Fig. 1(a). Alternatively, one can detect
the optical field in a complete and orthonormal basis set as shown in
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Fig. 1. Conceptual diagram for (a) direct imaging and (b) sorter-
based measurement. A spatial mode sorter can direct different spatial
mode components to different locations to perform spatial mode
demultiplexing.

Fig. 1(b), which can be realized by a spatial mode sorter and is referred
to as sorted-based measurement. In the following derivations we use
the Dirac notation to represent the fields and assume a coherent state
for each point source. While a semiclassical treatment is sufficient
to derive these formalisms inspired by quantum metrology [46], the
Dirac notation is convenient to denote the mixed state of the incoherent
sources and makes it straightforward to extend the theory to other
types of light sources such as single-photon state [42] and thermal state
[31]. For a more tractable analysis and experiment here we assume a
Gaussian PSF and the field distribution at the pupil plane for an on-axis
point source is denoted by |ψ〉, where 〈r0|ψ〉 = ψ(r0; z) and

ψ(r0; z) =
√

2/π exp
(
−r2

0

)
exp

(
−ikzNA2r2

0/2
)

, (1)

where NA is the numerical aperture, z is the axial position of the point
source, k = 2π/λ is the wavenumber, λ is the wavelength, r0 is the
normalized radial coordinate in the pupil plane, and |r0〉 is the corre-
sponding radial eigenstate. Here we define r0 = rp/( f1NA), where
rp is the radial coordinate in the pupil plane and f1 is the objective
focal length. This pupil plane field distribution can be viewed as a
paraxial, Gaussian approximation to the pupil function of a hard-edged
circular aperture [54]. For direct imaging a tube lens is used to perform
a Fourier transform to the pupil function, and the intensity distribution
on the image plane becomes

I(r; z) =
2
π

1
w2(z)

exp
(
− 2r2

w2(z)

)
,

w(z) =
Mλ

πNA

√
1 + (zπNA2/λ)2,

(2)

where r is the radial coordinate in the image plane, w(z) denotes
the Gaussian beam waist width on the image plane, and M is the
magnification of the imaging system. By measuring the beam size
we can estimate the axial position z. Similar to the case of trans-
verse superresolution [31], here we assume a priori knowledge of
two on-axis, equally bright incoherent point sources with the cen-
troid located at z = 0 plane, and the axial separation between
them is s. The density matrix of these two point sources at the
pupil plane can be written as ρ = (|ψ1〉 〈ψ1|+ |ψ2〉 〈ψ2|)/2, where
〈r0|ψ1〉 = ψ(r0; s/2) and 〈r0|ψ2〉 = ψ(r0;−s/2). The normal-
ized total intensity at the image plane can be calculated as Is(r) ≡
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Fig. 2. (a) The Fisher information (FI) as a function of axial sepa-
ration for different methods. The sorter and binary sorter can reach
the quantum Fisher information for small separation s, while the
Fisher information of direct imaging drops to zero. (b) The normal-
ized square root of Cramér-Rao lower bound (CRLB) for different
methods. N is the detected photon number.

〈r| ρ |r〉 = [I(r; s/2) + I(r;−s/2)]/2, where |r〉 is the radial eigen-
state in the image plane, and the image plane is related to the pupil
plane by the Fourier transform. For sorter-based measurement, the
incident field is decomposed to an orthonormal basis set, and here we
consider the radial Laguerre-Gaussian (LG) basis because we notice
that the axial position only affects the radial profile of pupil function.
The radial LG basis in the pupil plane can be denoted as

∣∣LGp
〉
, where〈

r0
∣∣LGp

〉
= LGp(r0) and

LGp(r0) =
√

2/π exp
(
−r2

0

)
Lp(2r2

0), (3)

where Lp(·) is the Laguerre polynomial. While the two-dimensional
LG basis involves another azimuthal index `, this radial subset with
` = 0 can still form a complete basis to describe the pupil function
because of the rotational symmetry of the pupil function as shown in
Eq. (1). Decomposing the pupil function ψ(r0; z) to this basis leads to
the following radial mode distribution:

P(p; z) = |
〈
ψ
∣∣LGp

〉
|2 =

4z2
Rz2p

(4z2
R + z2)p+1 , (4)

where zR = πw2
0/λ and w0 = λ/πNA [31]. For two equally bright

sources separated by s, the output radial mode distribution becomes
Ps(p) ≡

〈
LGp

∣∣ ρ
∣∣LGp

〉
= [P(p; s/2) + P(p;−s/2)]/2. It can be

noticed that for direct imaging and sorter-based measurement, the
two incoherent point sources have the same response because Eq. (2)
and Eq. (4) are even functions of z, which suggests that the analysis
presented here can also be applied to single point localization.

We next compare the performance of direct imaging and the sorter-
based measurement by calculating the Fisher information for both
techniques. The Fisher information for direct imaging is [31]

Jdirect(s) =
∫ 2π

0
dφ
∫ +∞

0

1
Is(r)

(
∂Is(r)

∂s

)2
rdr

=
4s2

(s2 + 4z2
R)

2
,

(5)

which is independent of the magnification M. The Fisher information
for the sorter-based measurement is

Jsorter(s) =
∞

∑
p=0

1
Ps(p)

(
∂Ps(p)

∂s

)2
=

4
s2 + 16z2

R
. (6)

The quantum Fisher information, i.e. the upper bound of Fisher
information of any possible measurements, can be calculated as [55]

Ks = 4[〈∂sψ1|∂sψ1〉 − | 〈ψ1|∂sψ1〉 |2], (7)

where |∂sψ1〉 = ∂ |ψ1〉 /∂s and it can be readily shown that Ks =
1/4z2

R. We also follow the usual way of using the symmetric loga-
rithmic derivative to calculate the quantum Fisher information and the
details are presented in Supplementary Section 1, which give the same
result. The reciprocal of quantum Fisher information is the quantum
CRLB which gives the lower bound of classical CRLB for any possible
measurements. We notice that the sorter-based measurement can reach
the quantum Fisher information when the separation goes to zero, i.e.
Jsorter(0) = Ks [see Eq. (6)], therefore it can be considered to be an
optimal measurement for s close to zero. However, in a realistic experi-
ment, a mode sorter can only access a finite-dimensional Hilbert space.
Therefore we follow the procedure in [56] to construct other possible
optimal measurements that can reach the quantum Fisher information
in the limit of s = 0. In Supplementary Section 2 we show that a
binary radial mode sorter is sufficient to access the quantum Fisher
information. A binary sorter has two output ports, and all odd-order
radial modes are directed to one output port while all even-order modes
are directed to another output port. Therefore, the photon probability
distribution at two output ports is

P0
s (s) =

∞

∑
p=0

Ps(2p; s) =
1
2
+

4z2
R

8z2
R + s2

,

P1
s (s) =

∞

∑
p=0

Ps(2p + 1; s) =
1
2
−

4z2
R

8z2
R + s2

.

(8)

Therefore the Fisher information for a binary sorter is

Jbinary(s) =
1

∑
q=0

1
Pq

s (s)

(
∂Pq

s (s)
∂s

)2

=

=
256z4

R
(s2 + 8z2

R)
2(s2 + 16z2

R)
.

(9)

The plot of Fisher information for different methods is shown in
Fig. 2(a). It can be readily seen that the Fisher information of di-
rect imaging begins to drop when s is smaller than 2zR. In an inco-
herent imaging microscopy, the axial resolution can be expressed as
∆z = 2λ/NA2 [57], which can be rewritten as ∆z = 2πzR with
our notation. We note that the discrepancy between 2zR and 2πzR
comes from our assumption of a Gaussian PSF rather than an Airy
disk. However, it can be noticed that the sorter-based measurement
stays nonzero and achieve the quantum Fisher information when s ap-
proaches zero, which makes it possible to break the diffraction limit. To
further illustrate the improvement provided by the radial mode sorter,
we calculate the Fisher information of astigmatic imaging [21] and the
result is presented in Supplementary Section 3. It is shown that while
astigmatism can enhance three-dimensional localization precision of
a single point source, it cannot be used directly to resolve the axial
separation between two simultaneously emitting point sources without
the help of photo-switchable fluorophores.

Having analyzed the performance of each method, now we need
to establish the estimator of separation. For direct imaging, it can be
verified that the maximum likelihood estimator is

ŵ =

√√√√ 2
N

N

∑
m=1

r2
m, ŝdirect = 2zR

√
ŵ2

w2
0
− 1. (10)

where rm is the radial coordinate of m-th photon in the image plane
and N is the total detected photon number. The intuition behind this
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Fig. 3. Schematic of the experimental setup. A 633 nm He-Ne laser is attenuated and modulated by an acousto-optic modulator (AOM) to
generate weak pulses. A computer-generated hologram is imprinted onto spatial light modulator (SLM 1) to generate the desired pupil function
to simulate point sources. Two different methods, the binary sorter-based measurement and the direct imaging method, are used to estimate the
separation s. In our experiment we use a flip mirror to select the measurement method.

estimator is to measure the Gaussian width w by detecting the radial
coordinates of photons and then use the estimated Gaussian width to
calculate the separation s. However, the simple estimator of ŵ does
not take into account any experimental imperfections such as detector
noise or pixelation, and thus may not be robust in a realistic experiment.
Therefore, we apply the algorithm in [58] to realize a robust, efficient
Gaussian width estimator ŵ in our experiment. For binary sorter-based
measurement, the maximum likelihood estimator is

Q̂ =
1
N

1

∑
q=0

q ·mq =
m1
N

, ŝbinary = 2zR

√
2

1− 2Q̂
− 2, (11)

where m0 and m1 are the photon numbers in the two output ports and
m0 + m1 = N is the total detected photon number. The intuition
behind this estimator is to use the photon probability distribution at the
output ports of the sorter to estimate the separation. The lower bound
of the variance of an estimator for N independent measurements is
given by [38]

Var(ŝ) ≥ (∂E[ŝ]/∂s)2

N · J (s)
, (12)

where the right-hand side is referred to as the CRLB and N is the
photon number in the context of our experiment given the Poisson
statistics. This formula for CRLB is also applicable to other classical
photon states such as single-photon state [42] and thermal state [31],
and the variance that scales as N−1 is referred to as the standard
quantum limit [33, 59]. For an unbiased estimator whose expectation
is equal to the value of the estimated parameter, i.e. E[ŝ] = s, this
CRLB reduces to a simpler form as Var(ŝ) ≥ 1/[N · J (s)], which is
just the reciprocal of Fisher information as we plot in Fig. 2(b).

3. EXPERIMENT

A schematic for experimental setup is shown in Fig. 3. We use an
attenuated laser source to illuminate the spatial light modulator (SLM)
to generate the Gaussian pupil function produced by a point source.
An acousto-optic modulator (AOM) is driven by a signal generator to
produce 3 µs pulses, and the driving signal is also connected to an
intensified charge coupled device (ICCD, PI-Max 4 1024i) for synchro-
nization. The average detected photon number in each pulse is around
2000. We use the calibration factor provided by the manufacturer to
calculate the photon number in each pixel of the camera. We emulate

two incoherent sources by mixing the data for z = ±s/2 that is gener-
ated by SLM separately. A computer-generated hologram is displayed
on SLM 1 to generate the desired field at the first diffraction order [60].
Each time the SLM displays the corresponding hologram to generate
either ψ(r0; s/2) or ψ(r0;−s/2) to simulate a point source located
at z = s/2 or z = −s/2 respectively. Since both holograms are
never present at the same time, there is no coherence between the two
simulated point sources. By using a long exposure time of the camera
to incoherently mix the data, we effectively generate two incoherent,
simultaneously emitting point sources [61]. For the Gaussian pupil
function we use the parameters of NA = 0.1 and f1 = 4 mm. The
calibration data of SLM 1 is presented in Supplementary Section 4.

To construct a binary radial mode sorter we use two polarization-
sensitive SLMs (Hamamatsu X10468-02) as shown in the schematic
[50–52]. In our experiment we use two different areas on a single
SLM to act as two SLMs for reduced experimental complexity. Due
to the polarization sensitivity of the SLM, this binary mode sorter is
designed to work for diagonally polarized light and cannot be directly
used for an arbitrary polarization [52], therefore we use a polarizer
before the SLM to filter out undesired polarization. We note that the
polarization of photons is not relevant to the theory of superresolution
and thus the use of a polarization-sensitive sorter is permissible for this
proof-of-principle experiment. To realize a polarization-independent
sorter one can use the previously reported interferometric scheme [50].
A quadratic phase pattern is imprinted on SLM 2 and SLM 3 as the
essential ingredient of the sorter. This quadratic phase is identical
to the phase of a spherical lens with a focal length of 46.5 cm, and
the separation between two SLMs is 65.8 cm. Each SLM performs a
fractional Fourier transform of order α = π/2 to horizontally polarized
light and α = π/4 to vertically polarized light respectively. One can
check that even-order radial modes remain diagonally polarized and
odd-order radial modes become anti-diagonally polarized after passing
through both SLMs [50]. Through the use of a half wave-plate (HWP)
and a polarizing beamsplitter (PBS) one can efficiently separate odd-
and even-order radial modes to distinct output ports. More details
about the principle of radial mode sorter can be found in [50–52]. As
mentioned earlier, this radial mode sorter cannot be realized by mode
parity decomposition based on mirror reflection [41] or a 4- f system.
Moreover, this radial mode sorter is in principle lossless, and the loss
of our sorter mainly comes from the limited light utilization efficiency
of the SLMs, which can be reduced by using other low-loss devices
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such as commercially available polarization directed flat lenses [51].
In our experiment we direct the photons from different output ports to
different areas of an ICCD. For direct imaging, we use a 10 cm tube
lens to form the image on the ICCD detector plane. For each separation
we repeat the experiment 400 times and calculate the expectation and
standard deviation from the collected data based on the maximum
likelihood estimators.

4. DISCUSSION

The measured separation and the standard deviation as a function of
the real separation for different measurement methods are presented in
Fig. 4. The average detected photon number for each measurement in
our experiment is around 2000. As can be seen in Eq. (12) the loss of
photons will decrease the detected photon number N and thus increase
the variance of measurement and deteriorate the measurement preci-
sion. However, since all devices used in our experiment are essentially
phase-only elements, the loss can always be reduced to zero by using
appropriate anti-reflection coatings and in our analysis we assume a
detection efficiency of unity. The Monte Carlo simulation results are
provided as comparisons and they agree well with the experimental
data. In the simulation we set the detected photon number to be 2000,
and the expectation and standard deviation of both estimators are re-
trieved by averaging 4000 simulations. We assume a noiseless detector
with a sufficiently high spatial resolution in the simulation, and the
estimators for direct imaging and binary sorter-based measurement are
given by Eq. (10) and Eq. (11) respectively. One immediate observa-
tion from Fig. 4(a) is that the measured separation of direct imaging
deviates from the real value when the real separation is close to zero.
Another observation from Fig. 4(b) is that the measured standard devia-
tion does not follow the CRLB and stays finite in the vicinity of s = 0.
Both observations are not due to experimental imperfections as they
agree with the Monte Carlo simulation and should be attributed to the
bias of the estimator [38, 42]. The bias of an estimator is defined as
the difference between the estimator’s expectation value and the real
value of the parameter being estimated. In supplementary section 5
we provide a detailed, analytical calculation of the bias of ŝdirect. The
expectation value of ŝdirect at s = 0 can be well approximated as

E[ŝdirect]|s=0 ≈ 0.82N−1/4zR, (13)

which is 0.123zR for N = 2000 and very close to the Monte Carlo sim-
ulation 0.124zR as shown in Fig. 4(a). It can be noticed that this bias is
on the order of zR when N is small, which qualitatively agrees with the
conventional axial resolution of 2πzR. A large photon number N can
lower the value of bias, which corresponds to the fact that higher signal-
to-noise ratio can enhance the resolution of direct imaging. A simple
example is the deconvolution algorithm, which can be used to obtain
subdiffraction resolution as long as sufficiently high signal-to-noise
ratio is available. However, the bias of direct imaging scales rather
slowly with N as N−1/4, and to reduce this bias a sufficiently large
N is needed. While a large photon number is attainable with bright
light source, in a photon-starving experiment such as fluorescence
microscopy it is usually not achievable. The slope of the estimator’s
expectation is calculated to be

∂E[ŝdirect]

∂s

∣∣∣∣
s=0
≈ 0.43N1/4s

zR
. (14)

Together with Eq. (12) it immediately follows that the CRLB be-
comes Var(ŝdirect)|s=0 ≥ 0.74z2

R/
√

N. In contrast to the diverg-
ing CRLB solely predicted by the reciprocal of Fisher information,
the CRLB calculated here takes into account the bias and explains
the non-diverging standard deviation as shown in the experiment
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Fig. 4. (a) Measured separation and (b) the standard deviation (SD)
of s as a function of actual separation for direct imaging method.
(c) Measured separation and (d) the SD of s as a function of actual
separation for binary sorter-based measurement. The Monte Carlo
simulation results and the square root of corresponding CRLB are
provided as comparisons. N is the detected photon number.

and Monte Carlo simulation. The scaled CRLB is calculated to be√
Var(ŝdirect)/(zR/

√
N) ≥ 5.8, which is close to the standard devi-

ation in the Monte Carlo simulation result 6.6 as shown in Fig. 4(b).
It should be noted that Eq. (12) is an inequality instead of an equality,
which explains the discrepancy between 5.8 and 6.6. Furthermore,
∂E[ŝdirect]/∂s|s=0 = 0 implies that the expectation value has a slope
of zero when s = 0 as can be seen in Fig. 4(a). Hence, despite of a fi-
nite standard deviation, it is intrinsically unrealistic to use the measured
s to recover the real s in the vicinity of s = 0 for the direct imaging
method, and any attempt to construct an unbiased estimator will lead to
a diverging standard deviation. Another observation is that the variance
of the estimator for direct imaging scales as Var(ŝdirect)|s=0 ∝ N−1/2,
therefore this estimator cannot reach the standard quantum limit when
s is small [33, 59].

For the sorter-based measurement, it can also be noticed that the
standard deviation deviates from the reciprocal of Fisher information
and drops to zero when s is small. In the supplement we show that
∂E[ŝbinary]/∂s|s=0 = 0 and thus Var(ŝbinary)|s=0 ≥ 0, which explains
the zero standard deviation that violates the reciprocal of Fisher infor-
mation as shown in Fig. 4(d). It has been pointed out that this so called
superefficiency only exists on a set of points with zero measure and
the region of superefficiency reduces for more samples [31, 62]. In ad-
dition, we have also shown in the supplement that E[ŝbinary]|s=0 = 0,
which coincides with the Monte Carlo simulation and suggests that the
sorter-based measurement can provide more precise, less biased mea-
surement when s is small. However, we still observe a small, nonzero
separation at s = 0 in our experiment, and the zero standard deviation
is not visible either. We attribute this inconsistence to experimental
imperfections including dark noise of the detector and misalignment
of the sorter. At the point of s = 0, all photons are supposed to be
sorted to the output port of even-order radial modes and no photons
should be detected at the other output port. Nevertheless, when we ex-
perimentally characterize our sorter we observe that 0.28% of detected
photons are routed to the wrong output port on average when s = 0.
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In the data processing, we have subtracted this averaged crosstalk be-
fore estimating the separation, but the associated shot noise cannot
be simply eliminated and thus leads to the experimental inconsistence
as we describe above. In the supplement we quantify the effect of
crosstalk on data processing and the analytical calculation shows that
E[ŝbinary]|s=0 = 0.043zR, which is very close to the measured value of
0.049zR. There are several ways to further mitigate the crosstalk, such
as aligning the sorter more carefully, replacing the ICCD by low-noise
single-pixel detectors, and developing a more robust estimator [58].
Despite of these experimental imperfections, it is apparent that the
sorter-based measurement can outperform the direct imaging, given the
strong bias and higher standard deviation of direct imaging compared
to that of the sorter-based measurement. In addition, the advantage
of sorter-based measurement is supposed to be more obvious with a
larger photon number, because the variance of direct imaging scales as
N−1/2 rather than N−1.

To further provide a quantitative description of the improvement
of our experiment, we compare the two methods in terms of bias and
variance. For the direct imaging, if we want to reduce its bias to
0.049zR that is obtained in sorter-based measurement, the photon num-
ber needs to be on the order of 105 to satisfy 0.82N−1/4zR = 0.049zR.
Furthermore, from Fig. 4 it can be seen that the measured standard
deviation of direct imaging is approximately twice that of sorter-based
measurement. Remember that the variance of direct imaging scales
as N−1/2, thus the standard deviation scales as N−1/4 and 16 times
more photons are needed to reduce the standard deviation of direct
imaging to the level of sorter-based measurement. We note that here we
are comparing the experimental data rather than noise-free theoretical

s / zR

2
F

I
/

(1
/

)
Rz

Fig. 6. The Fisher information of different measurements for an
Airy-disk-shaped PSF model.

predictions. The Monte Carlo simulation shows that the sorter-based
measurement has zero bias and zero standard deviation at s = 0, and
thus the direct imaging needs infinite photons to beat the sorter-based
measurement.

In this work we mainly focus on the superresolution of axial sep-
aration for two point sources, but we note that the theory presented
above can be directly applied to the localization of axial position z of a
single point source as long as the separation s is replaced by s→ z/2,
which presents an alternative to the sophisticated interferometric mi-
croscopy [17–20]. In contrast to the interferometric detection scheme
which requires nanometer-scale stabilization over a path length on the
order of 1 m [16], the common-path radial mode sorter used in our
experiment is robust and no additional stabilization control is needed.
We assume that the two point sources are on axis and their center
position is known. In Supplementary Section 3 we analyze the effect
of misaligned centroid, i.e., centroid of point source pair zC 6= 0. As
shown in Fig. 5(a), while the Fisher information drops in the presence
of misaligned centroid, the radial mode sorter can provide improved
precision for a small separation with |zC| < 0.3zR. In a realistic
scenario, an adaptive measurement can be used to estimate both the
centroid and separation as discussed in [31]. However, unlike the case
of transverse centroid estimation, the direct imaging does not provide
sufficient Fisher information for measuring the axial centroid of point
source pair. Here we notice that astigmatic imaging [21] presents an
effective method to overcome this difficulty. The analysis is included
in Supplementary Section 3 and the Fisher information of centroid
estimation for astigmatic imaging is shown in Fig. 5(b). It can be seen
that astigmatic imaging provides appreciable Fisher information over a
broad range of centroid and separation. Hence, a hybrid measurement
consisting of both radial mode sorter and astigmatic imaging can be
a practical scheme for axial superresolution. Another assumption we
make is that a Gaussian PSF is used for more tractable analysis and ex-
periment. While the Gaussian PSF is a widely adopted approximation
[57, 63], for a high-NA imaging system a more accurate PSF model
may be needed [64]. In this case, one can always establish a complete
and orthonormal basis based on the PSF model and construct a sorter
accordingly to achieve superresolution accordingly [46]. Very recently,
it has been pointed out theoretically that for the pupil function of a
hard-edged aperture, the optimal measurement basis turns to be the
Zernike basis [55, 56], and we discuss other optimal measurements
that are easier to implement in Supplementary Section 2. Therefore,
based on our result it can be anticipated that three-dimensional super-
resolution can be realized as long as a Zernike mode sorter is available.
In Supplementary Section 6 we calculate the Fisher information of vari-
ous measurements for an Airy-disk-shaped PSF and the result is shown
in Fig. 6. It can be seen that while the Zernike mode sorter provides
the optimal measurement [55], the LG mode sorter as a sub-optimal
measurement can still provide nonzero Fisher information at near-zero
separation, outperforming the direct imaging measurement. Here we
only take into account the 0th and 1st order radial modes in calculating
the Fisher information of LG mode sorter and Zernike mode sorter,
which should be reasonably achievable in an experiment. Moreover,
given the widely used Gaussian-to-tophat laser beam shaper [65, 66],
it is possible to convert the pupil function of a hard-edged aperture to a
Gaussian and then apply the radial mode sorter subsequently. Recent
advances in multi-plane light conversion [67] also provide an alter-
native possible solution for building a Zernike mode sorters. Finally,
despite the classical light source used in our experiment, our method
can be used for other light sources such as single-photon emitters
[31, 42], because the quantum state of photons represents the temporal
coherence of light and is generally independent from the spatial degree
of freedom. Therefore, it is possible to combine the radial mode sorter
and intensity correlation measurement to further increase the resolution
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for single-photons sources [68].
In conclusion, we theoretically and experimentally demonstrate

the axial superresolution based on a radial mode sorter. The binary
radial mode sorter employed in out experiment can reach the quantum
Cramér-Rao lower bound for an arbitrarily small axial separation. Our
method makes three-dimensional superresolution imaging promising
and can be potentially useful for enhancing the resolution of optical
microscopes.
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SUPPLEMENTARY MATERIAL

1. DERIVATION OF THE QUANTUM FISHER INFORMATION

Following the procedure in the supplement of Ref. [55], the quantum Fisher information in our case can be directly calculated as

Ks = 4[〈∂sψ1|∂sψ1〉 −
∣∣ 〈ψ1|∂sψ1〉

∣∣2], (S1)

and it can be readily verified that Ks = 1/4z2
R for the Gaussian PSF. Here we also follow an usual method to calculate the quantum Fisher

information based on the symmetric logarithmic derivative. For two point sources that are located at z = ±s/2 respectively, the density matrix of a
single photon can be expressed as

ρ =
1
2
(|ψ1〉 〈ψ1|+ |ψ2〉 〈ψ2|), (S2)

where 〈r0|ψ1〉 = ψ(r0; s/2) and 〈r0|ψ1〉 = ψ(r0;−s/2). The orthonormal bases in which the density matrix is diagonal are found to be

|e1〉 = A1(|ψ1〉+ e−iφ |ψ2〉),

|e2〉 = A2(|ψ1〉 − e−iφ |ψ2〉),

A1 = (2 +
2√

1 + δ2
)−1/2,

A2 = (2− 2√
1 + δ2

)−1/2,

δ = kNA2s/4,

φ = arctanδ.

(S3)

Hence the density matrix can be rewritten as

ρ =
1

4A2
1
|e1〉 〈e1|+

1
4A2

2
|e2〉 〈e2| . (S4)

Here we also define the following orthonormal bases

|e3〉 = B1(|m3〉+ e−i3φ |m4〉),

|e4〉 = B2(|m3〉 − e−i3φ |m4〉),

|m3〉 =
i

c0
|∂sψ1〉 − c1 |e1〉 − c2 |e2〉 ,

|m4〉 =
−i
c0
|∂sψ2〉 − c3 |e1〉 − c4 |e2〉 ,

(S5)

where |∂sψ1〉 = ∂ |ψ1〉 /∂s, |∂sψ2〉 = ∂ |ψ2〉 /∂s, and the coefficients are calculated to be

B1 =

(
δ2(
√

δ2 + 1− 1)
2(δ2 + 1)5/2

)−1/2

,

B2 =

(
δ2(
√

δ2 + 1 + 1)
2(δ2 + 1)5/2

)−1/2

,

c0 = kNA2/4,

c1 = A1
−eiφ + (δ− i)2

2(δ− i)2 ,

c2 = A2
eiφ + (δ− i)2

2(δ− i)2 ,

c3 = A1
eiφ(δ + i)2 − 1

2(δ + i)2 ,

c4 = A2
−1− eiφ(δ + i)2

2(δ + i)2 .

(S6)

Here the symmetric logarithmic derivative of density matrix is

L(ρ) = ∑
j,k;Dj+Dk 6=0

2
Dj + Dk

〈
ej

∣∣∣ ∂ρ

∂s
|ek〉

∣∣∣ej

〉
〈ek| (S7)
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where Dj =
〈

ej

∣∣∣ ρ
∣∣∣ej

〉
and the matrix elements of L(ρ) can be calculated as

L11 = c0 A2
1

−2δ

(δ2 + 1)3/2 ,

L22 = c0 A2
2

2δ

(δ2 + 1)3/2 ,

L21 = L∗12 =
−2ic0δ

δ2 + 1
,

L31 = L∗13 =
2iA1c0

2B1
(e2iφ − 1),

L41 = L∗14 =
−2iA1c0

2B2
(e2iφ + 1),

L32 = L∗23 =
−2iA1c0

2B2
(e2iφ + 1),

L42 = L∗24 =
2iA2c0

2B2
(e2iφ − 1),

L33 = L34 = L43 = L44 = 0,

(S8)

where Ljk =
〈

ej

∣∣∣L(ρ) |ek〉. After more algebra one can calculate that the quantum Fisher information is

Ks(ρ) = Re TrL(ρ)L(ρ)ρ = c2
0 =

1
4z2

R
. (S9)

2. SATURATION OF THE QUANTUM CRAMÉR-RAO BOUND

We are interested in the saturating the quantum Cramér-Rao bound in the limit of s = 0. Similar to the proof of Corollary 1 in Ref. [56], one can
show that a measurement consisting of projectors Πk = ∑α |πkα〉 〈πkα| can saturate the quantum Cramér-Rao bound at s = 0 if and only if for all
regular projectors (defined as |

〈
ψ1
∣∣Πk

∣∣ψ1
〉 ∣∣

s=0| > 0) we can have〈
∂0

s ψ1

∣∣∣πkα

〉 ∣∣
s=0 = 0, ∀k, (S10)

where
∣∣∂0

s ψ1
〉 ∣∣

s=0 = (|∂sψ1〉 − 〈ψ1|∂sψ1〉 |ψ1〉)
∣∣
s=0. Such an optimal measurement can be constructed by choosing a proper trial basis {πkα}

and then follow the procedure in Ref. [56]: (i) Identify regular basis vectors defined as 〈ψ1|πkα〉
∣∣
s=0 6= 0 and null basis vectors defined as

〈ψ1|πkα〉
∣∣
s=0 = 0. (ii) Calculate

〈
∂0

s ψ1
∣∣πkα

〉 ∣∣
s=0 and check whether it vanishes or not. (iii) Assemble regular basis vectors satisfying Eq. (S10)

as a regular projector Πk = ∑α |πkα〉 〈πkα|. (iv) A null basis vector |πkα〉 is flexible if 〈∂sψ1|πkα〉
∣∣
s=0 = 0. The rank one flexible projector

Πkα formed by a flexible basis vector can be added to any of the previous regular projectors or the following null projectors. (v) Assemble null
basis vectors that are not flexible as a null projector Πk = |πkα〉 〈πkα| defined as

〈
ψ1
∣∣Πk

∣∣ψ1
〉 ∣∣

s=0 = 0. One can check that any measurement
constructed from the previous procedure can satisfy Eq. (S10).

A. Optimal measurement basis set for the Gaussian pupil function

In the main text, we consider the case of the Gaussian pupil function, ψ1(r0) =
√

2/π · exp
(
−r2

0
)
· exp

(
−iksNA2r2

0/4
)
. It is straightforward to

find
ψ1(r0)

∣∣
s=0 = LG0(r0), (S11)

∂sψ1(r0)
∣∣
s=0 = − ikNA2

8
[LG0(r0)− LG1(r0)]. (S12)

We take radial Laguerre-Gaussian modes
〈
r0
∣∣LGp

〉
= LGp(r0) as a trial basis. So we find that for step (i) in the limit s = 0, the only regular basis

vector is |LG0〉 and the remaining other basis vectors are null. (ii) It can be readily shown that〈
∂0

s ψ1

∣∣∣LG0

〉 ∣∣
s=0 = 〈∂sψ1|LG0〉

∣∣
s=0 − 〈∂sψ1|LG0〉

∣∣
s=0 〈LG0|LG0〉 = 0.

(iii) We obtain a regular projector Π′0 = |LG0〉 〈LG0|. (iv) From Eq. (S12), we find
〈
∂sψ1

∣∣LGp
〉
= 0 for p ≥ 2. Thus the basis vectors with p

higher than one are all flexible and therefore can freely added to any regular or null projector. (v) The only non-flexible null basis vector is |LG1〉,
thus we can form a null projector Π′1 = |LG1〉 〈LG1|. We add the projector formed by flexible basis vectors of even and odd order to the previous
regular projectors Π0 and Π1 respectively. Therefore the final optimal measurements can be

Π0 = ∑
p=0

∣∣LG2p
〉 〈

LG2p
∣∣ , Π1 = ∑

p=0

∣∣LG2p+1
〉 〈

LG2p+1
∣∣ . (S13)

Alternatively one can add the flexible projectors to Π′0 or Π′1 to give rise to optimal measurements of

Π0 = |LG0〉 〈LG0| , Π1 = 1−Π0, (S14)
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Fig. S1. Fisher information of (a) axial position z of a single point source and (b) axial separation s between a pair of point sources. The Fisher
information without astigmatism (ast.) is also plotted as a reference.

or
Π0 = 1−Π1, Π1 = |LG1〉 〈LG1| . (S15)

Any sorter that can efficiently perform the above measurements can be used to reach the quantum Fisher information when s approaches 0.

B. Optimal measurement basis set for the pupil function of a hard-edged aperture
The construction of optimal measurement for the Gaussian pupil function can be analogously done for the pupil function of hard-edged aperture.
Consider the pupil function ψ1(r0) =

√
2/π · circ(

√
2r0) exp

(
−iksNA2r2

0/4
)
, where circ(r) = 1 if 0 ≤ r ≤ 1 and circ(r) = 0 if r > 1. The

quantum Fisher information is still expressed by Eq. (S1). It is straightforward to find

ψ1(r0)
∣∣
s=0 = Z0(

√
2r0), (S16)

∂sψ1(r0)
∣∣
s=0 = − ikNA2

16
√

3
[Z2(
√

2r0) +
√

3Z0(
√

2r0)], (S17)

where Zn(
√

2r0) =
√

2(n + 1)/πRn(
√

2r0)circ(
√

2r0) and Rn is the Zernike polynomial. We take radial Zernike basis 〈r0|Zn〉 = Zn(
√

2r0)
as the trial basis. Following the previous procedure, we find the following optimal measurements:

Π0 = ∑
even n

|Z2n〉 〈Z2n| , Π1 = ∑
odd n
|Z2n〉 〈Z2n| , (S18)

or
Π0 = |Z0〉 〈Z0| , Π1 = 1−Π0, (S19)

or
Π0 = 1−Π1, Π1 = |Z2〉 〈Z2| . (S20)

Any sorter that can efficiently perform the above measurements can be used to reach the quantum Fisher information when s approaches 0.
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Fig. S2. (a) The Fisher information of separation estimation for sorter-based measurement with different centroid positions. The Fisher infor-
mation for direct imaging with point source pair centroid zC = 0 is plotted as a reference. (b) The Fisher information of centroid estimation for
astigmatic imaging with different separations.
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3. ANALYSIS OF ASTIGMATIC IMAGING

A. Astigmatic imaging for separation estimation
In this section we calculate the Fisher information for astigmatic imaging. We introduce astigmatism to the Gaussian pupil function by adding the
quadratic phase of a vertically oriented cylindrical lens, which can be expressed as

ψ(xp, yp; z) =
√

2/π
1

f1NA
exp

(
−

x2
p + y2

p

( f1NA)2

)
exp

(
−i

kz
2 f 2

1
x2

p

)
exp

[
−i(

kz
2 f 2

1
+

k
2 fC

)y2
p

]
, (S21)

where fC = 1.2 m is the focal length of the astigmatic cylindrical lens and f1 = 4 mm is the objective focal length. The corresponding intensity in
the image plane can be calculated as

I(x, y; z) =
2
π

1
wx(z)wy(z)

exp
(
− 2x2

w2
x(z)

)
exp

(
− 2y2

w2
y(z)

)
, (S22)

where

wx(z) =
λ

πNA

√
1 + (πzNA2/λ)2, wy(z) =

λ

πNA

√
1 + [π(

f 2
1

fC
+ z)NA2/λ]2. (S23)

The Fisher information then can be obtained as

Jast(s) =
∫∫ +∞

−∞

1
I(x, y, s/2)

(
∂I(x, y, s/2)

∂s
)2dxdy. (S24)

The Fisher information with astigmatism is plotted as the dashed line in Fig. S1. As in comparison, in Fig. S1(a) we plot the Fisher information
for single point source axial localization and in Fig. S1(b) the Fisher information for measurement of separation of two point sources. For axial
localization of a single point source, astigmatism can help increase the Fisher information at z→ 0 as expected. However, for measuring the axial
separation of a pair of point sources, the Fisher information again drops to zero, which contrasts to the improvement of radial mode sorter discussed
in our manuscript.

B. Effect of centroid misalignment and astigmatic imaging for centroid estimation
Assume that the centroid of the point source pair is zC and the separation is s, so the positions of two point sources are z1 = zC + s/2 and z1 = zC −
s/2, respectively. Therefore, the output radial mode distribution becomes P′(p; zC, s) ≡

〈
LGp

∣∣ ρ
∣∣LGp

〉
= [P(p; zC + s/2) + P(p; zC − s/2)]/2.

Consequently, the Fisher information of separation in the presence of centroid misalignment can be written as

J ′(s) =
∞

∑
p=0

1
P′(p; zC, s)

(
∂P′(p; zC, s)

∂s

)2
, (S25)

where the result is shown in Fig.S2(a).
As the next step, we analyze the Fisher information of centroid estimation for astigmatic imaging. The intensity at the image plane can be

rewritten as

I′(x, y; zC, s) =
1
2

I(x, y; zC + s/2) +
1
2

I(x, y; zC − s/2), (S26)

where the definition of I(x, y; z) follows Eq. (S22), and the Fisher information of centroid estimation is thus

J ′ast(zC, s) =
∫∫ +∞

−∞

1
I(x, y; zC, s)

(
∂I(x, y, zC, s)

∂zC
)2dxdy. (S27)

Here we use the value of fC = 0.5 m and the result is shown in Fig.S2(b).

4. SLM CALIBRATION AND DATA PROCESSING

In our experiment we use SLM 1 to generate Gaussian point spread function, and we calibrate SLM 1 to compensate the aberration and experimental
imperfection. The pupil function we want to generate is

ψ(r0; z) =
√

2/π exp
(
−r2

0

)
exp

(
−ikzNA2r2

0/2
)

, (S28)

where z = ±s/2 and this pupil function is generated at the first diffraction order of the computer-generated hologram imprinted on the SLM. We
apply Seidel abberations to the computer-generated hologram to improve mode quality and tune the parameter z to fit the expected curve. For
direct imaging, the measured width w0 of the Gaussian PSF should increase with z as expressed in Eq. (2) in the manuscript, and the corrected
experimental result is shown in Fig. S3(a). For binary sorter-based measurement, the value of Q calculated from the output photon numbers of the
binary sorter defined in Eq. (11) can be written as a function of z as

Q =
1
2

(
1− 1

z2/32z2
R + 1

)
. (S29)
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(a) (b)

Fig. S3. (a) Measured Gaussian width w0 as a function of z. (b) Measured Q of binary sorter as a function of z.

We correct the SLM to fit this curve and the calibrated data is shown in Fig. S3(b). Due to the detector noise and misalignment of radial mode sorter,
the output Q has a small, nonzero value of 0.28% at z = 0, i.e. Q(z = 0) = 0.28%, and we treat this experimentally measured nonzero value as a
constant and subtract it before estimating the axial position. In other words, we use a new quantity Q̄ = Q− 0.28% in the estimator to calculate
s. However, the shot noise associated with this crosstalk cannot be simply removed by this subtraction. At z = 0, Q is in fact a random variable
with an average of 0.28%. For a specific measurement, if the measured Q is lower than 0.28%, then Q̄ becomes negative and the above equation
results in an imaginary z. In our experiment, once a negative Q̄ is obtained we force it to be zero to guarantee a real z. Given that Q̄ is either zero
or positive at z = 0, the expectation of Q̄ becomes positive rather than 0, and consequently the expectation of ẑ becomes positive. At z = 0 the
two point sources coincide and thus this is why we measured a positive s when the s is zero. This treatment is also used in the estimator of direct
imaging as will be analyzed in detail in the next section.

To quantify our treatment, we model the crosstalk of 0.28% as binomial distribution. Specifically, we assume a probability of p = 0.28% for
a photon to be detected in the output port for odd-order radial modes. For N photons, the number of photons that appear in the output port for
odd-order radial modes follows the binomial distribution as

B(k; N, p) =
N!

k!(N − k)!
pk(1− p)N−k. (S30)

Here the estimator is defined as

Q̂ = k/N, ŝ = 2zR

√
2

1− 2Q̂
− 2. (S31)

The expectation of Q̂ is E[Q̂] = p = 0.28%. As we mentioned above, we subtract this number and use ˆ̄Q = Q̂− 0.28% as the new estimator to
mitigate the effect of crosstalk. However, it is possible to obtain a negative Q̄, and we force it to be zero whenever a negative value is obtained. Then
the expectation of ŝ can be calculated as

E[ŝ] =
N

∑
k>Np

2zRB(k; H, p)

√
2

1− 2 k−Np
N

− 2. (S32)

For N = 2000 and p = 0.28% the above equation can be numerically calculated to be E[ŝ] = 0.043zR, which is very close to the experimentally
measured value of 0.049zR.

5. BIAS ANALYSIS OF THE ESTIMATOR

A. Direct imaging method
The intensity distribution on the image plane for the direct imaging method can be written as [see Eq. (2) in the manuscript]

I(r; z) =
2
π

1
w2(z)

exp
(
− 2r2

w2(z)

)
,

w(z) =
Mλ

πNA

√
1 + (zπNA2/λ)2,

(S33)

which can be interpreted as the probability density function (PDF) on the image plane for single photons. The magnification M is assumed to be 1 to
simplify the calculation, and as we show in the manuscript this magnification does not influence the Fisher information. Since the point sources
are located at z = ±s/2, in the following we rewrite w(z) as w(s) = w(z = s/2). The maximum likelihood estimator of direct imaging for N
measurements is

ŝdirect = 2zR

√√√√ 2
Nw2

0

N

∑
m=1

r2
m − 1, (S34)
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and our goal here is to analyze the bias of this estimator at the limit of s→ 0. The CRLB of an estimator is [38]

Var(ŝ) ≥ (∂E[ŝ]/∂s)2

N · I(s) , (S35)

where Var(ŝ)is the variance of the estimator, E[ŝ] is the expectation of estimator, and I(s) = 4s2/(s2 + 4z2
R)

2 is the Fisher information. For an
unbiased estimator, i.e. E[ŝ] = s and thus ∂E[ŝ]/∂s = 1, the CRLB is simply given by the inverse of Fisher information. In the manuscript we show
that the Fisher information of direct imaging vanishes when s→ 0, but the variance of direct imaging in both experiment and simulation does not
diverge to infinity. This is because of the bias of the estimator as we analyze in the following. In the polar coordinate, the PDF becomes

f (r) =
4

w2(s)
exp

(
− 2r2

w2(s)

)
, r ≥ 0. (S36)

Since the estimator is defined in terms of r2, here we define r̄ = r2 and the PDF of r̄ can be calculated as

f̄ (r̄) = f (r(r̄))
dr
dr̄

=
2

w2(s)
exp

(
− 2r̄

w2(s)

)
, r ≥ 0, (S37)

where r(r̄) =
√

r̄. For N independent measurements (r1, r2, · · · , rm), the PDF of the sum of random variables is the convolution of each PDF.
Therefore, the PDF of x = ∑N

m=1 r2
m can be expressed as f̄ (r̄)⊗ f̄ (r̄)⊗ · · · ⊗ f̄ (r̄), where ⊗ denotes the operation of convolution. This PDF turns

to be the Erlang distribution, which is a special case of the gamma distribution, and can be given as

g(x; N, k′) =
1

(N − 1)!
k′N xN−1 exp

(
−k′x

)
, x ≥ 0, (S38)

where k′ = 2/w2(s). Therefore, the PDF of x̄ = 2x/Nw2
0 − 1, which is the term under the square root of Eq. (S34), can be readily obtained as

P(x̄) = g(x̄ + 1; N, k), x̄ ≥ −1, (S39)

where k = Nw2
0k′/2 = N/[1 + (sπNA2/2λ)2]. It can be noticed that the estimator, which can be written as ŝdirect = 2zR

√
x̄, become ill-posed

when x̄ < 0. The intuition behind this behavior is that the estimator calculates the separation s based on the measured w(s). By definition we know
that w(s) ≥ w0, but in an experiment it is possible to get a value of w(s) that is even less than w0, especially when the available photon number is
small. One way to proceed is to force x̄ = 0 whenever a negative x̄ = 0 is measured, and this is how we perform our experiment as well as the
Monte Carlo simulation. Hence, the integration region −1 ≤ x̄ ≤ 0 can be ignored because

√
x̄ is forced to be 0, and consequently the expectation

becomes
E[ŝdirect] = E[2zR

√
x̄] = 2zR

∫ ∞

0

√
x̄g(x̄ + 1; N, k)dx̄

= 2zR

∫ ∞

1

√
x̄− 1g(x̄; N, k)dx̄.

(S40)

When s is small, we can use the Taylor expansion of k as k ≈ N(1− c0s2) with c0 = π2NA4/4λ2 = 1/4z2
R. In addition, when N is relatively

large, such as 2000 used in our experiment, we can use the Stirling approximation N! ≈
√

2πNN+1/2e−N and thus g(x̄; N, k) can be approximated
as

g(x̄; N, k) ≈ g(x̄; N, N(1− c0s2)) ≈
√

N
2π

(1− c0s2)N xN−1e(1−x)NeNxc0s2
. (S41)

Using eNxc0s2 ≈ 1 + Nxc0s2 and (1− c0s2)N ≈ 1− Nc0s2, we have eNxc0s2
(1− c0s2)N ≈ 1 + N(x− 1)c0s2 and thus

g(x̄; N, k) ≈
√

N
2π

xN−1e(1−x)N [1 + N(x− 1)c0s2],

∂g(x̄; N, k)
∂s

≈
√

2N
π

xN−1e(1−x)N N(x− 1)c0s,

(S42)

therefore

E[ŝdirect]
∣∣
s=0 =

√
2N
π

zR

∫ ∞

1

√
x̄− 1x̄N−1e−(x−1)N . (S43)

For CRLB, we have
∂E[ŝdirect]

∂s

∣∣∣∣
s=0

= 2zR

∫ ∞

1

√
x̄− 1

∂g(x̄; N, k)
∂s

dx̄

=

√
N
2π

Ns
zR

∫ ∞

1
(x̄− 1)3/2 x̄N−1e−(x̄−1)Ndx̄.

(S44)

In the manuscript we evaluate scaled standard deviation as Var(ŝ)1/2/(zR/
√

N), which can be expressed as

Var(ŝ)1/2

zR/
√

N

∣∣∣∣
s=0
≥ ∂E[ŝdirect]/∂s

zR I(s)
=

2zR
s

∂E[ŝdirect]

∂s

=

√
2N
π

N
∫ ∞

1
(x̄− 1)3/2 x̄N−1e−(x̄−1)Ndx̄.

(S45)
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The integral of above equations can be analytically calculated by the following approximations. Eq. (S44) can be rewritten as

∂E[ŝdirect]

∂s

∣∣∣∣
s=0

=
s√

2πzR
N3/2

∫ ∞

1
(x̄− 1)3/2 x̄N−1e−(x̄−1)Ndx̄. (S46)

Then we set x̄ = 1 + t/
√

N and therefore the integral becomes

∂E[ŝdirect]

∂s

∣∣∣∣
s=0

=
s√

2πzR
N1/4

∫ ∞

0
t3/2(1 +

t√
N
)N−1e−

√
Ntdt. (S47)

Now we can use the following approximation

(1 +
t√
N
)N−1 = exp

(
(N − 1) ln

(
1 +

t√
N

))
= exp

(
(N − 1)(

t√
N
− t2

2N
+ · · · )

)
≈ exp

(√
Nt− t2

2
− t√

N
+

t2

2N

)
= exp

(√
Nt
)

exp
(
− t2

2

)
exp

(
− t√

N
+

t2

2N

)
≈ exp

(√
Nt
)

exp
(
− t2

2

)
(1− t√

N
+

t2

2N
),

(S48)

therefore
∂E[ŝdirect]

∂s

∣∣∣∣
s=0
≈ s√

2πzR
∝ N1/4

∫ ∞

0
t3/2e−t2/2(1− t√

N
+

t2

2N
)dt

=
s√

2πzR
N1/421/4

∫ ∞

0
e−t1 (t1/4

1 −
√

2
N

t3/4
1 +

1
N

t5/4
1 )dt

≈ s√
2πzR

N1/421/4Γ
(

5
4

)
≈ 0.43N1/4s

zR
,

(S49)

where t1 = t2/2 and Γ(z) =
∫ ∞

0 xz−1 exp(−x)dx is the Gamma function. Immediately we can get

Var(ŝ)1/2

zR/
√

N

∣∣∣∣
s=0
≥ ∂E[ŝdirect]/∂s

zR I(s)
=

2zR
s

∂E[ŝdirect]

∂s
≈ 0.86N1/4. (S50)

The right-hand side of the above inequality is calculated to be 5.8 for N = 2000, which is close to the Monte Carlo simulation result 6.6 as shown in
Fig. 4(b) in the manuscript. We note that the above equation is an inequality instead of an equation, thus our analytic result is reasonable since
5.8 < 6.6. Another apparent observation is that the CRLB of direct imaging scales with N as

Var(ŝ) ≥ (∂E[ŝ]/∂s)2

N · I(s) ∝
(N1/4)2

N
=

1√
N

(S51)

which means that this estimator cannot reach the standard quantum limit [59]. Similar math tricks can be applied to the evaluation of E[ŝdirect]
∣∣
s=0

and the result is

E[ŝdirect]
∣∣
s=0 = (

2
N
)1/4 zR√

π
Γ
(

3
4

)
≈ 0.82N−1/4zR, (S52)

which is E[ŝdirect]
∣∣
s=0 = 0.1226zR for N = 2000. Thus this approximated result is very accurate. It can be noticed that this bias term is proportional

to N−1/4, which scales rather slowly with N and a sufficiently large N ≈ 105 is needed to reduce the bias to 0.05zR.

B. Sorter-based measurement
For the binary mode sorter used in our experiment, the probability distribution is a binomial distribution which can be described as [see Eq. (8) in
the manuscript]

P0(s) =
1
2
+

4z2
R

8z2
R + s2

, P1(s) =
1
2
−

4z2
R

8z2
R + s2

. (S53)

The sum of N independent binomial distribution becomes another binomial distribution and the probability distribution is

P(k; N, p) =
(

N
k

)
pk(1− p)N−k, (S54)
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Fig. S4. Fisher information of different measurements for an Airy-disk-shaped PSF.

where p = P0(s). The estimator used for sorter-based measurement can be written as

Q̂ =
N − k

N
, ŝbinary = 2zR

√
2

1− 2Q̂
− 2. (S55)

In the limit of s→ 0, we have p ≈ 1− s2/16z2
R. Therefore

E[ŝbinary] =
N

∑
k=0

2zRP(k; N, p)

√
2

2k
N − 1

− 2

≈
N

∑
k=0

2zR
N!

k!(N − k)!
(1− s2

16z2
R
)k(

s2

16z2
R
)N−k

√
2

2k
N − 1

− 2

=
N

∑
k=0

2zR
N!

k!(N − k)!
(1− s2

16z2
R
)N−k(

s2

16z2
R
)k
√

2
2(N−k)

N − 1
− 2.

(S56)

In the last step we make the substitution k→ N − k. When s is small, we can discard all higher-order terms and only keep the term with a small k.
We keep the terms with k = 0, 1, 2 and the above equation becomes

E[ŝbinary] ≈ 0 + 4zR
√

N(1− s2

16z2
R
)N−1(

s2

16z2
R
) + 2zR

√
2N(N − 1)(1− s2

16z2
R
)N−2(

s2

16z2
R
)2 + · · ·

≈
√

Ns2

4zR
+ 2
√

2NzR(N − 1)(
s2

16z2
R
)2 + · · ·

(S57)

If we assume that Ns2/16z2
R � 1, then all higher-order terms can be neglected and the result can be simplified to

E[ŝbinary] =

√
Ns2

4zR
. (S58)

At the first sight this result seems problematic as the expectation value increases with N. This is because we make a strong assumption
Ns2/16z2

R � 1. Therefore when N is sufficiently large, the expectation value will not increase because other terms need to be taken into account. In
addition, the point we want to make with this result is that E[ŝbinary]|s=0 = 0 as well as ∂E[ŝbinary]/∂s|s=0 = 0. However, unlike the direct imaging,
the Fisher information of sorter-based measurement is Isorter(s) = 4/(s2 + 16z2

R) and is nonzero at s = 0 as Isorter(0) = 1/4z2
R. Therefore we

have

Var(ŝsorter)
∣∣
s=0 ≥

(∂E[ŝsorter]/∂s)2

N · Isorter(s)

∣∣∣∣
s=0

= 0. (S59)

Both the expectation and variance agrees with the Monte Carlo simulation.

6. FISHER INFORMATION CALCULATION FOR AN AIRY-DISK-SHAPED PSF

In our manuscript we mainly discuss the Gaussian PSF model which is valid only in the paraxial regime. In this section, we calculate the Fisher
information for an Airy-disk-shaped PSF. The main conclusion of this section is that: (1) For an Airy-disk-shaped PSF, the Zernike mode sorter
provides the optimal estimation for the axial separation of two point sources. (2) Although the Laguerre-Gaussian mode sorter is sub-optimal, it can
still provide persistent nonzero Fisher information and thus outperform the direct imaging in the near-zero separation regime.
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In the pupil plane, the normalized pupil function for an Airy-disk-shaped PSF can be written as

ψH(rp; z) =
1√

π( f1NA)2 circ(
rp

f1NA
) exp

(
−ikzr2

p/2 f 2
1

)
, (S60)

where rp is the radial coordinate in the pupil plane, f1 is the objective focal length, and circ(x) = 1 for x < 1 and circ(x) = 0 for x ≥ 1.
The density matrix for two point sources can be expressed as ρH = (

∣∣ψ1
H
〉 〈

ψ1
H
∣∣ + ∣∣ψ2

H
〉 〈

ψ2
H
∣∣)/2, where

〈
rp
∣∣ψ1

H
〉
= ψH(rp; s/2) and〈

rp
∣∣ψ2

H
〉
= ψH(rp;−s/2). The quantum Fisher information (QFI) can be directly calculated as [55]

KH = 4(〈(∂sΨ)2〉 − 〈∂sΨ〉2) = π2NA4

12λ2 , (S61)

where Ψ(rp; s) = −ksr2
p/4 f 2

1 is the phase gradient of ψH(rp; s/2) and the angular bracket denotes 〈Φ〉 =
∫ ∞

0 Φ(rp)|ψH(rp; z)|22πrpdrp. It is
clear that the QFI is a constant as shown in Fig. S4.

The Fisher information calculation for Zernike sorter is similar to that of the radial mode sorter. Here we use the well-known Zernike polynomials
as
〈
rp
∣∣Zm

n
〉
= Zm

n (rp/ f1NA). The Zernike mode is normalized in such as way that
∫ f1NA

0 |
〈
rp
∣∣Zm

n
〉
|22πrpdrp = 1. Since the azimuthal part

of the Zernike basis is ignored, we have m = 0 and n has to be an even number following the definition of Zernike polynomials. The Fisher
information can thus be computed as

JZernike(s) =
pmax

∑
p=0

∣∣∣∂s

〈
Z0

2p

∣∣∣ ρH

∣∣∣Z0
2p

〉∣∣∣2/〈Z0
2p

∣∣∣ ρH

∣∣∣Z0
2p

〉
, (S62)

where pmax + 1 is the number of Zernike modes used for superresolution. In our simulation we choose pmax = 1, which means that we only use
two modes of lowest orders, which should be reasonably achievable in an experiment. We plot JZernike(s) in Fig. S4 as orange circles. It can be
seen that the Zernike mode sorter can reach the QFI at a near-zero separation s.

As a comparison, we also calculate the Fisher information for direct imaging measurement. The intensity distribution in the image plane related
to the pupil function by a Fourier transform as

I(r, s) =
1
2
|F [ψH(rp, s/2)](r, s/2)|2 + 1

2
|F [ψH(rp,−s/2)](r,−s/2)|2, (S63)

where F [·] denotes the Fourier transform with coordinate transformation from rp (in the pupil plane) to r (in the image plane). Unlike the case of
the Gaussian PSF, the Fourier transform of the hard-edged pupil function does not have an analytic form, so the above equation has to be computed
numerically. Then the Fisher information for direct imaging measurement can be written as

JDirect(s) =
∫ ∞

0

1
I(r, s)

(
∂I(r, s)

∂s

)2
2πrdr, (S64)

and the result is plotted as the yellow dashed line in Fig. S4. It is clear that the Fisher information drops to zero for a near-zero separation s.
As the next step, we calculate the Fisher information for the use of Laguerre-Gaussian (LG) mode sorter for an Airy-disk-shaped PSF instead of

a Gaussian PSF. Here we use the LG basis in the pupil plane as

〈
rp
∣∣LGp

〉
=

√
2
π

1
wp

exp

(
−

r2
p

w2
p

)
Lp

(
2r2

p

w2
p

)
, (S65)

where wp is the beam waist radius. Here we use the value of wp = f1NA/1.121 which is obtained by numerically maximizing the inner product〈
LG0

∣∣Z0
0
〉
. The intuition behind is to make |LG0〉 be as close as possible to

∣∣Z0
0
〉
. Then the Fisher information can be calculated as

JLG(s) =
pmax

∑
p=0

∣∣∂s
〈
LGp

∣∣ ρH
∣∣LGp

〉∣∣2/〈LGp
∣∣ ρH

∣∣LGp
〉

. (S66)

The result is shown as the blue dotted line in Fig. S4. It can be seen that although LG mode sorter has a lower Fisher information than the optimal
Zernike mode sorter, its value at near-zero separation persists and does not drop to zero, outperforming the direct imaging.
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