20 research outputs found

    Molecular identification of adenoviruses associated with respiratory infection in Egypt from 2003 to 2010.

    Get PDF
    BACKGROUND: Human adenoviruses of species B, C, and E (HAdV-B, -C, -E) are frequent causative agents of acute respiratory infections worldwide. As part of a surveillance program aimed at identifying the etiology of influenza-like illness (ILI) in Egypt, we characterized 105 adenovirus isolates from clinical samples collected between 2003 and 2010. METHODS: Identification of the isolates as HAdV was accomplished by an immunofluorescence assay (IFA) and confirmed by a set of species and type specific polymerase chain reactions (PCR). RESULTS: Of the 105 isolates, 42% were identified as belonging to HAdV-B, 60% as HAdV-C, and 1% as HAdV-E. We identified a total of six co-infections by PCR, of which five were HAdV-B/HAdV-C co-infections, and one was a co-infection of two HAdV-C types: HAdV-5/HAdV-6. Molecular typing by PCR enabled the identification of eight genotypes of human adenoviruses; HAdV-3 (n = 22), HAdV-7 (n = 14), HAdV-11 (n = 8), HAdV-1 (n = 22), HAdV-2 (20), HAdV-5 (n = 15), HAdV-6 (n = 3) and HAdV-4 (n = 1). The most abundant species in the characterized collection of isolates was HAdV-C, which is concordant with existing data for worldwide epidemiology of HAdV respiratory infections. CONCLUSIONS: We identified three species, HAdV-B, -C and -E, among patients with ILI over the course of 7 years in Egypt, with at least eight diverse types circulating

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Development of Antimicrobial Laser-Induced Photodynamic Therapy Based on Ethylcellulose/Chitosan Nanocomposite with 5,10,15,20-Tetrakis(m-Hydroxyphenyl)porphyrin

    No full text
    The development of new antimicrobial strategies that act more efficiently than traditional antibiotics is becoming a necessity to combat multidrug-resistant pathogens. Here we report the efficacy of laser-light-irradiated 5,10,15,20-tetrakis(m-hydroxyphenyl)porphyrin (mTHPP) loaded onto an ethylcellulose (EC)/chitosan (Chs) nanocomposite in eradicating multi-drug resistant Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans. Surface loading of the ethylcelllose/chitosan composite with mTHPP was carried out and the resulting nanocomposite was fully characterized. The results indicate that the prepared nanocomposite incorporates mTHPP inside, and that the composite acquired an overall positive charge. The incorporation of mTHPP into the nanocomposite enhanced the photo- and thermal stability. Different laser wavelengths (458; 476; 488; 515; 635 nm), powers (5–70 mW), and exposure times (15–45 min) were investigated in the antimicrobial photodynamic therapy (aPDT) experiments, with the best inhibition observed using 635 nm with the mTHPP EC/Chs nanocomposite for C. albicans (59 ± 0.21%), P. aeruginosa (71.7 ± 1.72%), and S. aureus (74.2 ± 1.26%) with illumination of only 15 min. Utilization of higher doses (70 mW) for longer periods achieved more eradication of microbial growth

    A novel nanocomposite based on mycosynthesized bimetallic zinc-copperoxide nanoparticles, nanocellulose and chitosan: Characterization, antimicrobial and photocatalytic activities

    No full text
    Background: Recently, nanomaterials have received much attention due to their important role in solving medical and environmental problems. In the present study, a novel nanocomposite based on mycosynthesized bimetallic zinc-copper oxides nanoparticles, nanocellulose, and chitosan was ready through an ecofriendly method. Characterization, antimicrobial and photocatalytic activities were evaluated. Results: The result revealed that the prepared nanocomposite exhibited antibacterial activity against Bacillus subtilis, Escherichia coli and Staphylococcus aureus, where MICs were 7.81, 31.25 and 62.5 ”g mL−1. As well, the nanocomposite showed potential antifungal activity against Aspergillus brasiliensis where MIC was 7.81 ”g mL−1, but had minimal antifungal efficacy against Cryptococcus neoformans and Candida albicans where the MIC was 250 ”g mL−1 for each other. Furthermore, the nanocomposite had photocatalytic activity. The bimetallic and nanocomposite materials were characterized via physiochemical and topographic analysis. Conclusions: In conclusion, the prepared nanocomposite based on mycosynthesized bimetallic zinc-copper oxides nanoparticles nanocellulose and chitosan has antimicrobial and photocatalytic activities which can be applied to various environments.How to cite: Hasanin MS, Hashem AH, Al-Askar AA, et al. A novel nanocomposite based on mycosynthesized bimetallic zinc-copper oxides nanoparticles, nanocellulose and chitosan: Characterization, antimicrobial and photocatalytic activities. Electron J Biotechnol 2023;65. https://doi.org/10.1016/j.ejbt.2023.05.001

    Sustainable multifunctional zinc oxide quantum dots-aided double-layers security paper sheets

    No full text
    Fluorescence is well-known nowadays as one of the most efficient anti-counterfeiting techniques. Zinc oxide quantum dots (ZnOQds) are exceptionally fluorescence when exposed to ultraviolet (UV) light, which makes them a candidate for anti-counterfeiting printing. The resulting anti-counterfeiting papers are sustainable and resistance against organic dyes. In this work, ZnOQds were prepared via a green method and characterized under UV–visible spectroscopy, along with microscopic observations by transmission electron microscopy (TEM) and crystallography by X-ray diffraction (XRD). Formation of ZnOQds nanocrystals with an average partials size of 7.3 nm was approved. Additionally, double-layers sheets were prepared at two loading concentrations of ZnOQds, namely 0.5 and 1 (wt./v) and underwent characterization using a topographical surface study via field emission scanning electron microscopy (FE-SEM). Hybrid sheets were mechanically more stable compared to single-layer paper and likewise polymer film. Moreover, aging simulation approved a high stability for hybrid sheets. Particularly, the photoluminescence emission affirmed anti-aging character of hybrid paper for more than 25 years. The hybrid sheets also showed a broad range of antimicrobial activity

    Nanoparticles: Taking a Unique Position in Medicine

    No full text
    The human nature of curiosity, wonder, and ingenuity date back to the age of humankind. In parallel with our history of civilization, interest in scientific approaches to unravel mechanisms underlying natural phenomena has been developing. Recent years have witnessed unprecedented growth in research in the area of pharmaceuticals and medicine. The optimism that nanotechnology (NT) applied to medicine and drugs is taking serious steps to bring about significant advances in diagnosing, treating, and preventing disease—a shift from fantasy to reality. The growing interest in the future medical applications of NT leads to the emergence of a new field for nanomaterials (NMs) and biomedicine. In recent years, NMs have emerged as essential game players in modern medicine, with clinical applications ranging from contrast agents in imaging to carriers for drug and gene delivery into tumors. Indeed, there are instances where nanoparticles (NPs) enable analyses and therapies that cannot be performed otherwise. However, NPs also bring unique environmental and societal challenges, particularly concerning toxicity. Thus, clinical applications of NPs should be revisited, and a deep understanding of the effects of NPs from the pathophysiologic basis of a disease may bring more sophisticated diagnostic opportunities and yield more effective therapies and preventive features. Correspondingly, this review highlights the significant contributions of NPs to modern medicine and drug delivery systems. This study also attempted to glimpse the future impact of NT in medicine and pharmaceuticals

    Polysaccharide nanocomposites in wastewater treatment : A review

    No full text
    In modern times, wastewater treatment is vital due to increased water contamination arising from pollutants such as nutrients, pathogens, heavy metals, and pharmaceutical residues. Polysaccharides (PSAs) are natural, renewable, and non-toxic biopolymers used in wastewater treatment in the field of gas separation, liquid filtration, adsorption processes, pervaporation, and proton exchange membranes. Since addition of nanoparticles to PSAs improves their sustainability and strength, nanocomposite PSAs has gained significant attention for wastewater treatment in the past decade. This review presents a comprehensive analysis of PSA-based nanocomposites used for efficient wastewater treatment, focusing on adsorption, photocatalysis, and membrane-based methods. It also discusses potential future applications, challenges, and opportunities in adsorption, filtration, and photocatalysis. Recently, PSAs have shown promise as adsorbents in biological-based systems, effectively removing heavy metals that could hinder microbial activity. Cellulose-mediated adsorbents have successfully removed various pollutants from wastewater, including heavy metals, dyes, oil, organic solvents, pesticides, and pharmaceutical residues. Thus, PSA nanocomposites would support biological processes in wastewater treatment plants. A major concern is the discharge of antibiotic wastes from pharmaceutical industries, posing significant environmental and health risks. PSA-mediated bio-adsorbents, like clay polymeric nanocomposite hydrogel beads, efficiently remove antibiotics from wastewater, ensuring water quality and ecosystem balance. The successful use of PSA-mediated bio-adsorbents in wastewater treatment depends on ongoing research to optimize their application and evaluate their potential environmental impacts. Implementing these eco-friendly adsorbents on a large scale holds great promise in significantly reducing water pollution, safeguarding ecosystems, and protecting human health.
    corecore