22 research outputs found

    Galaxy And Mass Assembly (GAMA): detection of low-surface-brightness galaxies from SDSS data

    Get PDF
    We report on a search for new low-surface-brightness galaxies (LSBGs) using Sloan Digital Sky Survey (SDSS) data within the Galaxy And Mass Assembly (GAMA) equatorial fields. The search method consisted of masking objects detected with SDSS PHOTO, combining gri images weighted to maximize the expected signal-to-noise ratio, and smoothing the images. The processed images were then run through a detection algorithm that finds all pixels above a set threshold and groups them based on their proximity to one another. The list of detections was cleaned of contaminants such as diffraction spikes and the faint wings of masked objects. From these, selecting potentially the brightest in terms of total flux, a list of 343 LSBGs was produced having been confirmed using VISTA Kilo-degree Infrared Galaxy Survey (VIKING) imaging. The photometry of this sample was refined using the deeper VIKING Z band as the aperture-defining band. Measuring their g − i and J − K colours shows that most are consistent with being at redshifts less than 0.2. The photometry is carried out using an AUTO aperture for each detection giving surface brightnesses of μr ≳ 25 mag arcsec−2 and magnitudes of r > 19.8 mag. None of these galaxies are bright enough to be within the GAMA main survey limit but could be part of future deeper surveys to measure the low-mass end of the galaxy stellar mass function

    Galaxy And Mass Assembly (GAMA): the galaxy stellar mass function to z = 0.1 from the r-band selected equatorial regions

    Get PDF
    We derive the low-redshift galaxy stellar mass function (GSMF), inclusive of dust corrections, for the equatorial Galaxy And Mass Assembly (GAMA) data set covering 180 deg2. We construct the mass function using a density-corrected maximum volume method, using masses corrected for the impact of optically thick and thin dust. We explore the galactic bivariate brightness plane (M⋆–μ), demonstrating that surface brightness effects do not systematically bias our mass function measurement above 107.5 M⊙. The galaxy distribution in the M–μ plane appears well bounded, indicating that no substantial population of massive but diffuse or highly compact galaxies are systematically missed due to the GAMA selection criteria. The GSMF is fitted with a double Schechter function, with M⋆=1010.78±0.01±0.20M⊙ M⋆=1010.78±0.01±0.20M⊙ , ϕ⋆1=(2.93±0.40)×10−3h370 ϕ1⋆=(2.93±0.40)×10−3h703 Mpc−3, α1 = −0.62 ± 0.03 ± 0.15, ϕ⋆2=(0.63±0.10)×10−3h370 ϕ2⋆=(0.63±0.10)×10−3h703 Mpc−3 and α2 = −1.50 ± 0.01 ± 0.15. We find the equivalent faint end slope as previously estimated using the GAMA-I sample, although we find a higher value of M⋆ M⋆ . Using the full GAMA-II sample, we are able to fit the mass function to masses as low as 107.5  M⊙, and assess limits to 106.5  M⊙. Combining GAMA-II with data from G10-COSMOS, we are able to comment qualitatively on the shape of the GSMF down to masses as low as 106 M⊙. Beyond the well-known upturn seen in the GSMF at 109.5, the distribution appears to maintain a single power-law slope from 109 to 106.5. We calculate the stellar mass density parameter given our best-estimate GSMF, finding Ω⋆=1.66+0.24−0.23±0.97h−170×10−3 Ω⋆=1.66−0.23+0.24±0.97h70−1×10−3 , inclusive of random and systematic uncertainties

    Galaxy and Mass Assembly (GAMA): morphological transformation of galaxies across the green valley

    Get PDF
    We explore constraints on the joint photometric and morphological evolution of typical low redshift galaxies as they move from the blue cloud through the green valley and onto the red sequence. We select GAMA survey galaxies with 10.25 < log(M*/M⊙) < 10.75 and z < 0.2 classified according to their intrinsic u* − r* colour. From single component Sérsic fits, we find that the stellar mass-sensitive K −band profiles of red and green galaxy populations are very similar, while g −band profiles indicate more disk-like morphologies for the green galaxies: apparent (optical) morphological differences arise primarily from radial mass-to-light ratio variations. Two-component fits show that most green galaxies have significant bulge and disk components and that the blue to red evolution is driven by colour change in the disk. Together, these strongly suggest that galaxies evolve from blue to red through secular disk fading and that a strong bulge is present prior to any decline in star formation. The relative abundance of the green population implies a typical timescale for traversing the green valley ∼1 − 2 Gyr and is independent of environment, unlike that of the red and blue populations. While environment likely plays a rôle in triggering the passage across the green valley, it appears to have little effect on time taken. These results are consistent with a green valley population dominated by (early type) disk galaxies that are insufficiently supplied with gas to maintain previous levels of disk star formation, eventually attaining passive colours. No single event is needed quench their star formation

    Bacterial expression of human kynurenine 3-monooxygenase:Solubility, activity, purification

    Get PDF
    AbstractKynurenine 3-monooxygenase (KMO) is an enzyme central to the kynurenine pathway of tryptophan metabolism. KMO has been implicated as a therapeutic target in several disease states, including Huntington’s disease. Recombinant human KMO protein production is challenging due to the presence of transmembrane domains, which localise KMO to the outer mitochondrial membrane and render KMO insoluble in many in vitro expression systems. Efficient bacterial expression of human KMO would accelerate drug development of KMO inhibitors but until now this has not been achieved. Here we report the first successful bacterial (Escherichia coli) expression of active FLAG™-tagged human KMO enzyme expressed in the soluble fraction and progress towards its purification

    Galaxy and Mass Assembly (GAMA): morphological transformation of galaxies across the green valley

    No full text
    We explore constraints on the joint photometric and morphological evolution of typical low redshift galaxies as they move from the blue cloud through the green valley and onto the red sequence. We select GAMA survey galaxies with 10.25 < log(M*/M⊙) < 10.75 and z < 0.2 classified according to their intrinsic u* − r* colour. From single component Sérsic fits, we find that the stellar mass-sensitive K −band profiles of red and green galaxy populations are very similar, while g −band profiles indicate more disk-like morphologies for the green galaxies: apparent (optical) morphological differences arise primarily from radial mass-to-light ratio variations. Two-component fits show that most green galaxies have significant bulge and disk components and that the blue to red evolution is driven by colour change in the disk. Together, these strongly suggest that galaxies evolve from blue to red through secular disk fading and that a strong bulge is present prior to any decline in star formation. The relative abundance of the green population implies a typical timescale for traversing the green valley ∼1 − 2 Gyr and is independent of environment, unlike that of the red and blue populations. While environment likely plays a rôle in triggering the passage across the green valley, it appears to have little effect on time taken. These results are consistent with a green valley population dominated by (early type) disk galaxies that are insufficiently supplied with gas to maintain previous levels of disk star formation, eventually attaining passive colours. No single event is needed quench their star formation

    Galaxy And Mass Assembly (GAMA): the stellar mass budget by galaxy type

    Get PDF
    We report an expanded sample of visual morphological classifications from the Galaxy and Mass Assembly survey phase two, which now includes 7556 objects (previously 3727 in phase one). We define a local (z < 0.06) sample and classify galaxies into E, S0-Sa, SB0-SBa, Sab-Scd, SBab-SBcd, Sd-Irr, and ‘little blue spheroid’ types. Using these updated classifications, we derive stellar mass function fits to individual galaxy populations divided both by morphological class and more general spheroid- or disc-dominated categories with a lower mass limit of log(M*/M⊙) = 8 (one dex below earlier morphological mass function determinations). We find that all individual morphological classes and the combined spheroid-/bulge-dominated classes are well described by single Schechter stellar mass function forms. We find that the total stellar mass densities for individual galaxy populations and for the entire galaxy population are bounded within our stellar mass limits and derive an estimated total stellar mass density of ρ* = 2.5 × 108 M⊙ Mpc−3 h0.7, which corresponds to an approximately 4 per cent fraction of baryons found in stars. The mass contributions to this total stellar mass density by galaxies that are dominated by spheroidal components (E and S0-Sa classes) and by disc components (Sab-Scd and Sd-Irr classes) are approximately 70 and 30 per cent, respectively

    Galaxy And Mass Assembly (GAMA): mass-size relations of z < 0.1 galaxies subdivided by Sérsic index, colour and morphology

    Get PDF
    We use data from the Galaxy And Mass Assembly (GAMA) survey in the redshift range 0.01 < z < 0.1 (8399 galaxies in g to Ks bands) to derive the stellar mass–half-light radius relations for various divisions of ‘early’- and ‘late’-type samples. We find that the choice of division between early and late (i.e. colour, shape, morphology) is not particularly critical; however, the adopted mass limits and sample selections (i.e. the careful rejection of outliers and use of robust fitting methods) are important. In particular, we note that for samples extending to low stellar mass limits (<10 10 M ⊙ <1010M⊙ ) the Sérsic index bimodality, evident for high-mass systems, becomes less distinct and no-longer acts as a reliable separator of early- and late-type systems. The final set of stellar mass–half-light radius relations are reported for a variety of galaxy population subsets in 10 bands (ugrizZY JHKs) and are intended to provide a comprehensive low-z benchmark for the many ongoing high-z studies. Exploring the variation of the stellar mass–half-light radius relations with wavelength, we confirm earlier findings that galaxies appear more compact at longer wavelengths albeit at a smaller level than previously noted: at 10 10 M ⊙ 1010M⊙ both spiral systems and ellipticals show a decrease in size of 13 per cent from g to Ks (which is near linear in log wavelength). Finally, we note that the sizes used in this work are derived from 2D Sérsic light profile fitting (using galfit3), i.e. elliptical semimajor half-light radii, improving on earlier low-z benchmarks based on circular apertures
    corecore