6 research outputs found
Selective sweeps on novel and introgressed variation shape mimicry loci in a butterfly adaptive radiation.
Natural selection leaves distinct signatures in the genome that can reveal the targets and history of adaptive evolution. By analysing high-coverage genome sequence data from 4 major colour pattern loci sampled from nearly 600 individuals in 53 populations, we show pervasive selection on wing patterns in the Heliconius adaptive radiation. The strongest signatures correspond to loci with the greatest phenotypic effects, consistent with visual selection by predators, and are found in colour patterns with geographically restricted distributions. These recent sweeps are similar between co-mimics and indicate colour pattern turn-over events despite strong stabilising selection. Using simulations, we compare sweep signatures expected under classic hard sweeps with those resulting from adaptive introgression, an important aspect of mimicry evolution in Heliconius butterflies. Simulated recipient populations show a distinct 'volcano' pattern with peaks of increased genetic diversity around the selected target, characteristic of sweeps of introgressed variation and consistent with diversity patterns found in some populations. Our genomic data reveal a surprisingly dynamic history of colour pattern selection and co-evolution in this adaptive radiation
Ancient and historical DNA in conservation policy
Although genetic diversity has been recognized as a key component of biodiversity since the first Convention on Biological Diversity (CBD) in 1993, it has rarely been included in conservation policies and regulations. Even less appreciated is the role that ancient and historical DNA (aDNA and hDNA, respectively) could play in unlocking the temporal dimension of genetic diversity, allowing key conservation issues to be resolved, including setting baselines for intraspecies genetic diversity, estimating changes in effective population size (N-e), and identifying the genealogical continuity of populations. Here, we discuss how genetic information from ancient and historical specimens can play a central role in preserving biodiversity and highlight specific conservation policies that could incorporate such data to help countries meet their CBD obligations.Peer reviewe
MicroRNA-96 Directly Inhibits Îł-Globin Expression in Human Erythropoiesis
Fetal hemoglobin, HbF (α2Îł2), is the main hemoglobin synthesized up to birth, but it subsequently declines and adult hemoglobin, HbA (α2ÎČ2), becomes predominant. Several studies have indicated that expression of the HbF subunit Îł-globin might be regulated post-transcriptionally. This could be confered by âŒ22-nucleotide long microRNAs that associate with argonaute proteins to specifically target Îł-globin mRNAs and inhibit protein expression. Indeed, applying immunopurifications, we found that Îł-globin mRNA was associated with argonaute 2 isolated from reticulocytes that contain low levels of HbF (<1%), whereas association was significantly lower in reticulocytes with high levels of HbF (90%). Comparing microRNA expression in reticulocytes from cord blood and adult blood, we identified several miRNAs that were preferentially expressed in adults, among them miRNA-96. The overexpression of microRNA-96 in human ex vivo erythropoiesis decreased Îł-globin expression by 50%, whereas the knock-down of endogenous microRNA-96 increased Îł-globin expression by 20%. Moreover, luciferase reporter assays showed that microRNA-96 negatively regulates expression of Îł-globin in HEK293 cells, which depends on a seedless but highly complementary target site located within the coding sequence of Îł-globin. Based on these results we conclude that microRNA-96 directly suppresses Îł-globin expression and thus contributes to HbF regulation
Inference of past demography, dormancy and self-fertilization rates from whole genome sequence data.
Several methods based on the Sequential Markovian coalescence (SMC) have been developed that make use of genome sequence data to uncover population demographic history, which is of interest in its own right and is a key requirement to generate a null model for selection tests. While these methods can be applied to all possible kind of species, the underlying assumptions are sexual reproduction in each generation and non-overlapping generations. However, in many plants, invertebrates, fungi and other taxa, those assumptions are often violated due to different ecological and life history traits, such as self-fertilization or long term dormant structures (seed or egg-banking). We develop a novel SMC-based method to infer 1) the rates/parameters of dormancy and of self-fertilization, and 2) the populations' past demographic history. Using simulated data sets, we demonstrate the accuracy of our method for a wide range of demographic scenarios and for sequence lengths from one to 30 Mb using four sampled genomes. Finally, we apply our method to a Swedish and a German population of Arabidopsis thaliana demonstrating a selfing rate of ca. 0.87 and the absence of any detectable seed-bank. In contrast, we show that the water flea Daphnia pulex exhibits a long lived egg-bank of three to 18 generations. In conclusion, we here present a novel method to infer accurate demographies and life-history traits for species with selfing and/or seed/egg-banks. Finally, we provide recommendations for the use of SMC-based methods for non-model organisms, highlighting the importance of the per site and the effective ratios of recombination over mutation
Deep sequencing and proteomic analysis of the microRNA-induced silencing complex in human red blood cells
During maturation, erythropoietic cells extrude their nuclei but retain their ability to respond to oxidant stress by tightly regulating protein translation. Several studies have reported microRNA-mediated regulation of translation during terminal stages of erythropoiesis, even after enucleation. In the present study, we performed a detailed examination of the endogenous microRNA machinery in human red blood cells using a combination of deep sequencing analysis of microRNAs and proteomic analysis of the microRNA-induced silencing complex. Among the 197 different microRNAs detected, miR-451a was the most abundant, representing more than 60% of all read sequences. In addition, miR-451a and its known target, 14-3-3ζ mRNA, were bound to the microRNA-induced silencing complex, implying their direct interaction in red blood cells. The proteomic characterization of endogenous Argonaute 2-associated microRNA-induced silencing complex revealed 26 cofactor candidates. Among these cofactors, we identified several RNA-binding proteins, as well as motor proteins and vesicular trafficking proteins. Our results demonstrate that red blood cells contain complex microRNA machinery, which might enable immature red blood cells to control protein translation independent of de novo nuclei information
Selective sweeps on novel and introgressed variation shape mimicry loci in a butterfly adaptive radiation
Natural selection leaves distinct signatures in the genome that can reveal the targets and history of adaptive evolution. By analysing high-coverage genome sequence data from 4 major colour pattern loci sampled from nearly 600 individuals in 53 populations, we show pervasive selection on wing patterns in the Heliconius adaptive radiation. The strongest signatures correspond to loci with the greatest phenotypic effects, consistent with visual selection by predators, and are found in colour patterns with geographically restricted distributions. These recent sweeps are similar between co-mimics and indicate colour pattern turn-over events despite strong stabilising selection. Using simulations, we compare sweep signatures expected under classic hard sweeps with those resulting from adaptive introgression, an important aspect of mimicry evolution in Heliconius butterflies. Simulated recipient populations show a distinct 'volcano' pattern with peaks of increased genetic diversity around the selected target, characteristic of sweeps of introgressed variation and consistent with diversity patterns found in some populations. Our genomic data reveal a surprisingly dynamic history of colour pattern selection and co-evolution in this adaptive radiation. © 2020 Moest et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited