142 research outputs found

    Mitophagy-Related Cell Death Mediated by Vacquinol-1 and TRPM7 Blockade in Glioblastoma IV

    Get PDF
    Glioblastoma IV (GBM) is one of the deadliest malignant diseases in adults and is characterized by a high mutation rate and multiple traits to suppress inborn and acquired immunity. We here approached autophagy-related cell death in newly established GBM cell lines derived from individual tumor isolates. Treatment with a small molecule, termed Vacquinol-1 (Vac) exhibited 100% GBM cell death, which was related to mitochondrial dysfunction, calcium-induced endoplasmic reticulum (ER)-stress, and autophagy. The toxicity of Vac was significantly increased by the inhibition of transient receptor potential cation channel, subfamily M, member 7 (TRPM7). TRPM7 is overexpressed in GBM as well as in many other tumors and thus may be a potential target by the natural compound carvacrol. Of note, at higher concentrations, Vac also induced growth inhibition and cell death in non-transformed cell types. However, in the presence of the TRPM7 inhibitor carvacrol, the tumor-selective effect of Vac was very much increased. Results given in the present study are based on long-term video microscopy using IncuCyteZOOM®, calcium measurements, and 3D ultrastructural analysis using the cryofixed material

    CCR2 acts as scavenger for CCL2 during monocyte chemotaxis

    Get PDF
    Background: Leukocyte migration is essential for effective host defense against invading pathogens and during immune homeostasis. A hallmark of the regulation of this process is the presentation of chemokines in gradients stimulating leukocyte chemotaxis via cognate chemokine receptors. For efficient migration, receptor responsiveness must be maintained whilst the cells crawl on cell surfaces or on matrices along the attracting gradient towards increasing concentrations of agonist. On the other hand agonist-induced desensitization and internalization is a general paradigm for chemokine receptors which is inconsistent with the prolonged migratory capacity. Methodology/Principal Findings: Chemotaxis of monocytes was monitored in response to fluorescent CCL2-mCherry by time-lapse video microscopy. Uptake of the fluorescent agonist was used as indirect measure to follow the endogenous receptor CCR2 expressed on primary human monocytes. During chemotaxis CCL2-mCherry becomes endocytosed as cargo of CCR2, however, the internalization of CCR2 is not accompanied by reduced responsiveness of the cells due to desensitization. Conclusions/Significance: During chemotaxis CCR2 expressed on monocytes internalizes with the bound chemoattractant, but cycles rapidly back to the plasma membrane to maintain high responsiveness. Moreover, following relocation of the source of attractant, monocytes can rapidly reverse their polarization axis organizing a new leading edge along the newly formed gradient, suggesting a uniform distribution of highly receptive CCR2 on the plasma membrane. The present observations further indicate that during chemotaxis CCR2 acts as scavenger consuming the chemokine forming the attracting cue

    Differential effects of CXCR4 antagonists on the survival and proliferation of myeloid leukemia cells in vitro

    Get PDF

    The analysis of heterotaxy patients reveals new loss-of-function variants of GRK5

    Get PDF
    G protein-coupled receptor kinase 5 (GRK5) is a regulator of cardiac performance and a potential therapeutic target in heart failure in the adult. Additionally, we have previously classified GRK5 as a determinant of left-right asymmetry and proper heart development using zebrafish. We thus aimed to identify GRK5 variants of functional significance by analysing 187 individuals with laterality defects (heterotaxy) that were associated with a congenital heart defect (CHD). Using Sanger sequencing we identified two moderately frequent variants in GRK5 with minor allele frequencies <10%, and seven very rare polymorphisms with minor allele frequencies <1%, two of which are novel variants. Given their evolutionarily conserved position in zebrafish, in-depth functional characterisation of four variants (p.Q41L, p.G298S, p.R304C and p.T425M) was performed. We tested the effects of these variants on normal subcellular localisation and the ability to desensitise receptor signalling as well as their ability to correct the left-right asymmetry defect upon Grk5l knockdown in zebrafish. While p.Q41L, p.R304C and p.T425M responded normally in the first two aspects, neither p.Q41L nor p.R304C were capable of rescuing the lateralisation phenotype. The fourth variant, p.G298S was identified as a complete loss-of-function variant in all assays and provides insight into the functions of GRK5

    Severe Early-Onset Obesity Due to Bioinactive Leptin Caused by a p.N103K Mutation in the Leptin Gene.

    Get PDF
    CONTEXT: Congenital leptin deficiency is a very rare cause of severe early-onset obesity. We recently characterized a mutation in the leptin gene (p.D100Y), which was associated with detectable leptin levels and bioinactivity of the hormone. CASE DESCRIPTION: We now describe two siblings, a 9-year-old girl and a 6-year-old boy with severe early-onset obesity and hyperphagia, both homozygous for a c.309C>A substitution in the leptin gene leading to a p.N103K amino acid exchange in the protein and detectable circulating levels of leptin. In vitro experiments in a heterologous cell system demonstrated that the mutated protein was biologically inactive. Treatment with sc recombinant human leptin led to rapid improvement of eating behavior and weight loss. CONCLUSIONS: Sequencing of the leptin gene may need to be considered in hyperphagic, severely obese children with detectable levels of circulating leptin.This work was supported by Grant BMBF 01GI1120A from the Federal Ministry of Education and Research. Support was also provided by the Wellcome Trust (082390/Z/07/Z), the Medical Research Council, the National Institute for Health Research Cambridge Biomedical Research Centre, the European Research Council, and the Bernard Wolfe Health Neuroscience Fund (all to I.S.F.). J.-B.F. was supported by the International Graduate School in Molecular Medicine Ulm.This is the final version of the article. It first appeared from the Endocrine Society via http://dx.doi.org/10.1210/jc.2015-226

    Discovery and Characterization of an Endogenous CXCR4 Antagonist

    Get PDF
    CXCL12-CXCR4 signaling controls multiple physiological processes and its dysregulation is associated with cancers and inflammatory diseases. To discover as-yet-unknown endogenous ligands of CXCR4, we screened a blood-derived peptide library for inhibitors of CXCR4-tropic HIV-1 strains. This approach identified a 16 amino acid fragment of serum albumin as an effective and highly specific CXCR4 antagonist. The endogenous peptide, termed EPI-X4, is evolutionarily conserved and generated from the highly abundant albumin precursor by pH-regulated proteases. EPI-X4 forms an unusual lasso-like structure and antagonizes CXCL12-induced tumor cell migration, mobilizes stem cells, and suppresses inflammatory responses in mice. Furthermore, the peptide is abundant in the urine of patients with inflammatory kidney diseases and may serve as a biomarker. Our results identify EPIX4 as a key regulator of CXCR4 signaling and introduce proteolysis of an abundant precursor protein as an alternative concept for chemokine receptor regulation

    Acute pyelonephritis and renal scarring are caused by dysfunctional innate immunity in mCxcr2 heterozygous mice

    Get PDF
    The CXCR1 receptor and chemokine CXCL8 (IL-8) support neutrophil-dependent clearance of uropathogenic Escherichia coli from the urinary tract. CXCR1 is reduced in children prone to pyelonephritis, and heterozygous hCXCR1 polymorphisms are more common in this patient group than in healthy individuals, strongly suggesting a disease association. Since murine CXCR2 (mCXCR2) is functionally similar to human CXCR1, we determined effects of gene heterozygosity on the susceptibility to urinary tract infection by infecting heterozygous (mCxcr2+/−) mice with uropathogenic Escherichia coli. Clearance of infection and tissue damage were assessed as a function of innate immunity in comparison to that in knockout (mCxcr2−/−) and wild-type (mCxcr2+/+) mice. Acute sepsis-associated mortality was increased and bacterial clearance drastically impaired in heterozygous compared to wild-type mice. Chemokine and neutrophil responses were delayed along with evidence of neutrophil retention and unresolved kidney inflammation 1 month after infection. This was accompanied by epithelial proliferation and subepithelial fibrosis. The heterozygous phenotype was intermediate, between knockout and wild-type mice, but specific immune cell infiltrates that accompany chronic infection in knockout mice were not found. Hence, the known heterozygous CXCR1 polymorphisms may predispose patients to acute pyelonephritis and urosepsis

    CXCR4 expression on circulating pan-cytokeratin positive cells is associated with survival in patients with advanced non-small cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The CXC chemokine, CXCL12, and its receptor, CXCR4 promote metastases of a variety of solid tumors, including non-small cell lung cancer (NSCLC). The expression of CXCR4 on tumor cells may represent a critical biomarker for their propensity to metastasize. This study was performed to evaluate the hypothesis that co-expression of pan-cytokeratin and CXCR4 may be a prognostic marker for patients with advanced NSCLC.</p> <p>Methods</p> <p>We evaluated CXCR4 levels on circulating pan-cytokeratin positive cells from patients with NSCLC. NSCLC tumor and metastases were also assessed for the presence of CXCR4.</p> <p>Results</p> <p>Pan-cytokeratin positive cells were increased in the circulation of patients with NSCLC, as compared to normal control subjects. Patients with pan-cytokeratin +/CXCR4+ = 2,500 cells/ml had a significant improvement in median survival when compared with patients with pan-cytokeratin +/CXCR4+ >2,500 cells/ml (not achieved versus 14 weeks). CXCR4 expression was found on NSCLC tumors and at sites of tumor metastasis.</p> <p>Conclusion</p> <p>This study suggests that CXCR4 may be a prognostic marker in NSCLC, and provides hypothesis-generating results, which may be important in determining metastatic potential. In future studies, we will prospectively evaluate the prognostic significance of pan-cytokeratin/CXCR4+ cells, and determine the mechanisms involved in the regulation of CXCR4 expression on tumor cells in a larger patient population.</p

    CCR2 Acts as Scavenger for CCL2 during Monocyte Chemotaxis

    Get PDF
    <div><h3>Background</h3><p>Leukocyte migration is essential for effective host defense against invading pathogens and during immune homeostasis. A hallmark of the regulation of this process is the presentation of chemokines in gradients stimulating leukocyte chemotaxis via cognate chemokine receptors. For efficient migration, receptor responsiveness must be maintained whilst the cells crawl on cell surfaces or on matrices along the attracting gradient towards increasing concentrations of agonist. On the other hand agonist-induced desensitization and internalization is a general paradigm for chemokine receptors which is inconsistent with the prolonged migratory capacity.</p> <h3>Methodology/Principal Findings</h3><p>Chemotaxis of monocytes was monitored in response to fluorescent CCL2-mCherry by time-lapse video microscopy. Uptake of the fluorescent agonist was used as indirect measure to follow the endogenous receptor CCR2 expressed on primary human monocytes. During chemotaxis CCL2-mCherry becomes endocytosed as cargo of CCR2, however, the internalization of CCR2 is not accompanied by reduced responsiveness of the cells due to desensitization.</p> <h3>Conclusions/Significance</h3><p>During chemotaxis CCR2 expressed on monocytes internalizes with the bound chemoattractant, but cycles rapidly back to the plasma membrane to maintain high responsiveness. Moreover, following relocation of the source of attractant, monocytes can rapidly reverse their polarization axis organizing a new leading edge along the newly formed gradient, suggesting a uniform distribution of highly receptive CCR2 on the plasma membrane. The present observations further indicate that during chemotaxis CCR2 acts as scavenger consuming the chemokine forming the attracting cue.</p> </div
    corecore