337 research outputs found

    Binary Capture Rates for Massive Protostars

    Full text link
    The high multiplicity of massive stars in dense, young clusters is established early in their evolution. The mechanism behind this remains unresolved. Recent results suggest that massive protostars may capture companions through disk interactions with much higher efficiency than their solar mass counterparts. However, this conclusion is based on analytic determinations of capture rates and estimates of the robustness of the resulting binaries. We present the results of coupled n-body and SPH simulations of star-disk encounters to further test the idea that disk-captured binaries contribute to the observed multiplicity of massive stars.Comment: 4 pages, 3 figures, accepted to ApJ

    Saari's homographic conjecture for planar equal-mass three-body problem in Newton gravity

    Full text link
    Saari's homographic conjecture in N-body problem under the Newton gravity is the following; configurational measure \mu=\sqrt{I}U, which is the product of square root of the moment of inertia I=(\sum m_k)^{-1}\sum m_i m_j r_{ij}^2 and the potential function U=\sum m_i m_j/r_{ij}, is constant if and only if the motion is homographic. Where m_k represents mass of body k and r_{ij} represents distance between bodies i and j. We prove this conjecture for planar equal-mass three-body problem. In this work, we use three sets of shape variables. In the first step, we use \zeta=3q_3/(2(q_2-q_1)) where q_k \in \mathbb{C} represents position of body k. Using r_1=r_{23}/r_{12} and r_2=r_{31}/r_{12} in intermediate step, we finally use \mu itself and \rho=I^{3/2}/(r_{12}r_{23}r_{31}). The shape variables \mu and \rho make our proof simple

    Exact results for nonlinear ac-transport through a resonant level model

    Get PDF
    We obtain exact results for the transport through a resonant level model (noninteracting Anderson impurity model) for rectangular voltage bias as a function of time. We study both the transient behavior after switching on the tunneling at time t = 0 and the ensuing steady state behavior. Explicit expressions are obtained for the ac-current in the linear response regime and beyond for large voltage bias. Among other effects, we observe current ringing and PAT (photon assisted tunneling) oscillations.Comment: 7 page

    The Effects of Clumps in Explaining X-ray Emission Lines from Hot Stars

    Full text link
    It is now well established that stellar winds of hot stars are fragmentary and that the X-ray emission from stellar winds has a strong contribution from shocks in winds. Chandra high spectral resolution observations of line profiles of O and B stars have shown numerous properties that had not been expected. Here we suggest explanations by considering the X-rays as arising from bow shocks that occur where the stellar wind impacts on spherical clumps in the winds. We use an accurate and stable numerical hydrodynamical code to obtain steady-state physical conditions for the temperature and density structure in a bow shock. We use these solutions plus analytic approximations to interpret some major X-ray features: the simple power-law distribution of the observed emission measure derived from many hot star X-ray spectra and the wide range of ionization stages that appear to be present in X-ray sources throughout the winds. Also associated with the adiabatic cooling of the gas around a clump is a significant transverse velocity for the hot plasma flow around the clumps, and this can help to understand anomalies associated with observed line widths, and the differences in widths seen in stars with high and low mass-loss rates. The differences between bow shocks and the planar shocks that are often used for hot stars are discussed. We introduce an ``on the shock'' (OTSh) approximation that is useful for interpreting the X-rays and the consequences of clumps in hot star winds and elsewhere in astronomy.Comment: to appear in the Astrophysical Journa

    Gravitational Waves from Chaotic Dynamical System

    Full text link
    To investigate how chaos affects gravitational waves, we study the gravitational waves from a spinning test particle moving around a Kerr black hole, which is a typical chaotic system. To compare the result with those in non-chaotic dynamical system, we also analyze a spinless test particle, which orbit can be complicated in the Kerr back ground although the system is integrable. We estimate the emitted gravitational waves by the multipole expansion of a gravitational field. We find a striking difference in the energy spectra of the gravitational waves. The spectrum for a chaotic orbit of a spinning particle, contains various frequencies, while some characteristic frequencies appear in the case of a spinless particle.Comment: 8 pages, 13 figures. submitted to PR

    Euler configurations and quasi-polynomial systems

    Full text link
    In the Newtonian 3-body problem, for any choice of the three masses, there are exactly three Euler configurations (also known as the three Euler points). In Helmholtz' problem of 3 point vortices in the plane, there are at most three collinear relative equilibria. The "at most three" part is common to both statements, but the respective arguments for it are usually so different that one could think of a casual coincidence. By proving a statement on a quasi-polynomial system, we show that the "at most three" holds in a general context which includes both cases. We indicate some hard conjectures about the configurations of relative equilibrium and suggest they could be attacked within the quasi-polynomial framework.Comment: 21 pages, 6 figure

    Homoclinic crossing in open systems: Chaos in periodically perturbed monopole plus quadrupolelike potentials

    Get PDF
    The Melnikov method is applied to periodically perturbed open systems modeled by an inverse--square--law attraction center plus a quadrupolelike term. A compactification approach that regularizes periodic orbits at infinity is introduced. The (modified) Smale-Birkhoff homoclinic theorem is used to study transversal homoclinic intersections. A larger class of open systems with degenerated (nonhyperbolic) unstable periodic orbits after regularization is also briefly considered.Comment: 19 pages, 15 figures, Revtex

    Stellar Encounters with Massive Star-Disk Systems

    Full text link
    The dense, clustered environment in which massive stars form can lead to interactions with neighboring stars. It has been hypothesized that collisions and mergers may contribute to the growth of the most massive stars. In this paper we extend the study of star-disk interactions to explore encounters between a massive protostar and a less massive cluster sibling using the publicly available SPH code GADGET-2. Collisions do not occur in the parameter space studied, but the end state of many encounters is an eccentric binary with a semi-major axis ~ 100 AU. Disk material is sometimes captured by the impactor. Most encounters result in disruption and destruction of the initial disk, and periodic torquing of the remnant disk. We consider the effect of the changing orientation of the disk on an accretion driven jet, and the evolution of the systems in the presence of on-going accretion from the parent core.Comment: 11 pages, 10 figures, accepted to Ap
    • …
    corecore