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Abstract
We obtain exact results for the transport through a resonant level model (noninteracting
Anderson impurity model) for rectangular voltage bias as a function of time. We study both the
transient behavior after switching on the tunneling at time t = 0 and the ensuing steady state
behavior. Explicit expressions are obtained for the ac current in the linear response regime and
beyond for large voltage bias. Among other effects, we observe current ringing and PAT
(photon-assisted tunneling) oscillations.

                                                              

1. Introduction

The recent advances in nanotechnology created a lot of interest
in transport through correlated quantum impurities. While
the linear response regime essentially probes the ground
state properties of the system, transport beyond the linear
response regime explores genuine non-equilibrium quantum
many-body phenomena. However, theoretical calculations
beyond the linear response regime are challenging since
the steady state cannot be constructed via a variational
principle like equilibrium states. Even for dc bias only
recently exact numerical methods have been developed that
permit such investigations for interacting systems, notably the
time-dependent numerical renormalization group [1], Monte
Carlo methods [2, 3] and the time-dependent density matrix
renormalization group [4, 5]. Some of the analytical methods
that have been applied successfully are perturbative Keldysh
calculations [6], extensions of the renormalization group [7, 8],
flow equations [9] and generalizations of the NCA (non-
crossing approximation) to non-equilibrium [11, 10]. A
comparative review of theoretical methods can be found
in [12].

For ac bias beyond the linear response regime still
much less is known since, for example, the numerical
methods cannot easily be generalized to time-dependent bias.
Interesting ac phenomena are, for example, the photon-
assisted tunneling effect (PAT) [13] that has been observed
in experiments [14], or the ‘current ringing’ after a step-like

bias pulse [15]. Non-equilibrium Green’s function methods
can be employed [16, 15, 17] when the correlation effects
are not too strong. In the strongly correlated regime of
the Kondo model the non-crossing approximation was found
to be reliable [11, 19, 18, 20]. At a specific point of the
two-lead Kondo model it can be solved exactly [21], which
permits exact results for the current in the steady state [22],
after a rectangular pulse [23] or under sinusoidal bias [21].
Unfortunately, this special point is not generic for a Kondo
impurity that can be derived from an underlying Anderson
impurity model, which is experimentally the most relevant
situation.

A closely related direction of current research is quantum
pumping, where an ac gate voltage is applied to some central
levels of a nanostructure, which are coupled to several leads.
In this manner a direct current can be generated, see, for
example, [24–30].

In our paper we study the response of a resonant
level model (noninteracting Anderson impurity model) under
rectangular ac voltage bias after switching on the tunneling at
time t = 0.1 We derive exact analytical results for the transient
and steady state current by diagonalizing the Hamiltonian.
This exact solution contains both dc and ac bias in and

1 It should be mentioned that our model cannot be mapped to the model in [26]
by the gauge transformation introduced there because the left and right leads
are coupled to the same central level in our model. Therefore the hybridization
functions after the gauge transformation become time-dependent, which is
different from the situation studied in [26].
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Figure 1. A schematic diagram of our model: a step-like voltage bias is applied to the two leads coupled to the quantum dot.

beyond the linear response regime. While dc results and ac
results with sinusoidal bias have been obtained previously in
the literature [15], rectangular ac driving beyond the linear
regime seems not to have been studied before. Besides
being experimentally relevant, our results are also helpful for
exploring the various crossovers in this important model and
serve as an exact benchmark for future work.

2. Model and diagonalization

The resonant level model coupled to two leads is defined by the
following Hamiltonian:

Ĥ =
∑

kα

εk ĉ†
kα ĉkα +

∑

kα

g√
2
(ĉ†

kα d̂ + h.c.), (1)

where α = L, R denotes the leads, ĉ†
kα creates an electron

in lead α with energy εk and d̂† creates an electron at the
impurity site. The spin index can be omitted since the model
is noninteracting and we work with spinless fermions. All
energies are measured with respect to the single-particle energy
of the impurity orbital (εd ≡ 0). We take a wide band limit with
a linear dispersion relation, εk = kη, where η denotes the level
spacing and k an integer number. The hybridization is defined
by � = ρπg2, where ρ = 1/η. The impurity orbital spectral
function in equilibrium is then given by

ρd(ε) = �

π(ε2 + �2)
, (2)

which is a Lorentzian with width � as defined above.
Our strategy to obtain exact results is to first diagonalize

the discretized Hamiltonian and to then take the thermody-
namic limit η → 0. We introduce the hybridized basis ĉs =∑

k
g

εs−εk
Bs ĉk+ + Bs d̂ . It is then straightforward to diagonalize

the Hamiltonian

Ĥ =
∑

k

εk ĉ†
k− ĉk− +

∑

s

εs ĉ†
s ĉs , (3)

where ĉk± = 1√
2
(ĉkL ± ĉkR). The inverse transformation is

d̂ = ∑
s Bs ĉs and ĉk+ = ∑

s
g

εs−εk
Bs ĉs . The eigenvalues are

determined as solutions of the equation

εs

g2
= π

η
cot

πεs

η
. (4)

Bs is given by (for details see [31])

B2
s = g2

ε2
s + �2 + g2

, (5)

which in the thermodynamic limit yields

B2
s = g2

ε2
s + �2

. (6)

From the diagonalization one also derives the following set of
equations: ∑

s

B2
s = 1,

∑

s

g2 B2
s

(εs − εk)2
= 1,

∑

s

B2
s

εs − εk
= 0,

∑

s

B2
s

(εs − εk)(εs − εk′ )
= 0, k ′ �= k.

which will be important for calculating various summations
below.

An ac voltage bias leads to time-dependent potentials
ua(t) in the leads and the Hamiltonian takes the form

Ĥ =
∑

kα

(εk − uα(t))ĉ†
kα ĉkα +

∑

kα

g√
2
(ĉ†

kα d̂ + h.c.). (7)

We suppose that initially (at time t < 0) the left and right
lead chemical potentials are the same, μL = μR = μ, the
hybridization is switched off and that there is no electron in the
dot, nd = 0. At time t = 0 the hybridization is switched on
and a rectangular voltage bias with period 2T (see figure 1) is
applied: uR(t) = −uL(t) = V/2 for 2NT < t < (2N + 1)T
and uR(t) = −uL(t) = −V/2 for (2N + 1)T < t <

2(N + 1)T , where N is an integer denoting the number of
switching periods2. μ therefore gives the energy difference of
the impurity orbital to the ‘average’ Fermi energy of the leads
for time t > 0 (figure 1).

The current operator is defined as

Îα = sαe
dN̂α

dt
= igesα√

2

∑

k

(d̂†ĉkα − ĉ†
kα d̂), (8)

where N̂α denotes the total number of electrons in lead α and

sL
def= 1, sR

def= −1.
In the first half-period 2NT < t < (2N + 1)T the

Hamiltonian is

Ĥa =
∑

k

(
εk + V

2

)
ĉ†

kL ĉkL +
∑

k

(
εk − V

2

)
ĉ†

kR ĉkR

+
∑

kα

g√
2
(ĉ†

kα d̂ + h.c.). (9)

2 For mathematical simplicity we assume that V/2 is an integer multiple of
the level spacing η. In other words, εk ± V

2 can be written as some εk′ . This
condition will, of course, play no role in the thermodynamic limit.
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Because the dispersion relation is linear and k runs from −∞
to ∞ (wide band limit), we can simply relabel the fermion
operators, ĉkα = ˆ̃ck+ sα V

2η
,α. The potentials in the leads are

eliminated by this transformation and the Hamiltonian can be
diagonalized as before: Ĥa = ∑

s εs â†
s âs + ∑

k εk â†
k−âk−,

where âs = ∑
k

gBs

εs−εk
âk+ + Bs d̂ and âk± = 1√

2
(ĉk− ρV

2 ,L ±
ĉk+ ρV

2 ,R). Similarly, in the second half-period (2N + 1)T <

t < 2(N + 1)T the Hamiltonian is diagonalized as Ĥb =∑
s εs b̂†

s b̂s + ∑
k εk b̂†

k−b̂k−, where b̂s = ∑
k

gBs
εs−εk

b̂k+ + Bs d̂

and b̂k± = 1√
2
(ĉk+ ρV

2 ,L ± ĉk− ρV
2 ,R).

In the Heisenberg picture the current operator at time
t = 2NT + τ, τ ∈ [0, T ] (first half-period) can be expressed
as

Îα(t) = (eiĤa T eiĤbT )N eiĤaτ Îαe−iĤaτ (e−iĤbT e−iĤa T )N , (10)

and in the second half-period (t = (2N + 1)T + τ, τ ∈ [0, T ])

Îα(t) = (eiĤa T eiĤbT )N eiĤa T eiĤbτ Îαe−iĤbτ e−iĤa T

× (e−iĤbT e−iĤa T )N . (11)

To find Îα(t) we first calculate the time evolution of the single-
fermion operator d̂† and ĉ†

kα under Ĥa or Ĥb by expressing
d̂† and ĉ†

kα in the hybridized basis, next applying the diagonal
time evolution and finally transforming back to the original
basis. The calculation is straightforward but one needs to pay
attention when encountering summations with respect to the
eigenenergies εs . In the thermodynamic limit the summation
can be transformed into an integral when there is no pole in
the integrand, for example,

∑
s B2

s e−iεs t = ∫
dεs ρB2

s e−iεs t =
e−�t . If there are poles in the integrand we first calculate the
time derivative to get rid of the pole terms. Key formulae are

∑

s

B2
s e−iεs t

εs − εk
= e−iεk t − e−�t

εk + i�
(12)

∑

s

B2
s e−iεs t

(εs − εk)2
=

(
1

g2
+ −1 − (iεk − �)t

(εk + i�)2

)
e−iεk t

+ e−�t

(
εk + i�

)2 . (13)

By using these two formulae we get

eiĤ(a,b)T d̂†e−iĤ(a,b)T = e−�T d̂† +
∑

kα

g√
2

W (a,b)

kα ĉ†
kα (14)

eiĤ(a,b)T ĉ†
kαe−iĤ(a,b)T = g√

2
W (a,b)

kα d̂†

+
∑

k′α′

(
g2(W (a,b)

kα − W (a,b)
k′α′ )

2(ε
(a,b)
kα − ε

(a,b)
k′α′ )

+ δα,α′δk,k′ eiε(a,b)
kα T

)
ĉ†

k′α′ ,

(15)

where W (a,b)
kα (T ) = eiε(a,b)

kα
T −e−�T

ε
(a,b)
kα −i�

, εa
kL = εb

kR = εk + V/2 and

εa
kR = εb

kL = εk − V/2. Employing this formula twice gives

the evolution over a full period:

eiĤa T eiĤb T d̂†e−iĤb T e−iĤa T = e−2�T d̂† +
∑

kα

g√
2

Da
kα ĉ†

kα,

eiĤa T eiĤb T ĉ†
kαe−iĤbT e−iĤa T =

∑

k′α′
(Kk′α′,kα

+ δk,k′ δα,α′ e2iεk T )ĉ†
k′α′ + g√

2
Db

kα d̂†, (16)

where

D(a,b)
kα = eiε(a,b)

kα T W (b,a)
kα + e−�T W (a,b)

kα ,

Kk′α′,kα = eiεa
k′α′ T g2(W b

k′α′ − W b
kα)

2(εb
k′α′ − εb

kα)

+ eiεb
kα T g2(W a

k′α′ − W a
kα)

2(εa
k′α′ − εa

kα)
+ g2

2
W a

k′α′ W b
kα . (17)

We perform the summation over k by transforming it into an
integral and then employing the residue theorem. Applying the
above formula recursively N times yields

(eiĤa T eiĤb T )N d̂†(e−iĤbT e−iĤa T )N = e−2N�T d̂†

+
∑

kα

g√
2

Da
kαγN (k)ĉ†

kα,

(eiĤa T eiĤb T )N ĉ†
kα(e−iĤb T e−iĤa T )N =

∑

kα

g√
2

Db
kαγN (k)d̂†

+
∑

k′α′
(αN (k ′, k)Kk′α′,kα + δk,k′ δα,α′ e2N iεk T

+ g2

2
βN (k ′, k)Da

k′α′ Db
kα)ĉ†

k′α′ , (18)

where α0 = β0 = γ0 = 0 and the recursion relations are

αN+1(k
′, k) = αN (k ′, k)e2iεk′ T + e2N iεk T ,

βN+1(k
′, k) = βN (k ′, k)e2iεk′ T + γN (k),

γN+1(k) = γN (k)e−2�T + e2N iεk T .

It is easy to find

αN = e2N iεk T − e2N iεk′ T

e2iεk T − e2iεk′ T
(19)

γN = e2N iεk T − e−2N�T

e2iεk T − e−2�T
. (20)

In the first half-period the current evaluates to

Iα(t)=sα

e�

h

∫
dεk nk

(∑

α′
�|ξ (1)

kα′ |2 − 2 Im(ξ
(1)
kα e−2N iεk T −iεa

kατ )

)
,

(21)
where ξ

(1)
kα = Da

kαγN (k)e−�τ +e2N iεk T W a
kα(τ ). nk is the Fermi–

Dirac distribution function. In the following we will always
specialize to the zero temperature case (nk = 1 for k < 0,
nk = 0 for k � 0). In the second half-period the current
evaluates to

Iα(t) = sα

e�

h

∫
dεk nk

(∑

α′
�|ξ (2)

kα′ |2

− 2 Im(ξ
(2)

kα e−2N iεk T −iεa
kα T −iεb

kατ )

)
(22)
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where ξ
(2)

kα = Da
kαγN (k)e−�(T +τ) + e2N iεk T (W a

kαe−�τ +
eiεa

kα T W b
kα(τ )). To simplify notation in lengthy expressions we

will frequently employ � as the unit of energy and current,
and 1/� as the unit of time. In the final results we always
reintroduce all dimensionful parameters.

3. Buildup of the steady state

There is a transient time regime after the coupling of the dot to
the leads is switched on at time t = 0 before a steady state has
built up. Initially, the left lead current is opposite to the right
one and the initially empty dot is being charged. We will see
that these transient effects decay exponentially (proportional to
e−�t ) to the steady state.

Let us explicitly look at the two limits of period T → ∞
(dc bias) and T → 0 (very fast driving). For T → ∞ one finds
from equation (21)

Iα(t) = sα

e

h

∫
dεk nk

(∑

α′

1 + e−2t − eiεa
kα′ t−t − e−iεa

kα′ t−t

(εa
kα′ )2 + 1

− 2 Im

[
1 − e−iεa

kα t−t

εa
kα − i

])
. (23)

The steady limit (t → ∞) is

I = e�

h

∫
dε

(
n
(

ε + eV

2

)
− n

(
ε − eV

2

))
�

ε2 + �2
(24)

which, of course, coincides with the well-known result for the
stationary dc current [15], e.g. for zero temperature

I = 2e�

h
arctan

(
eV

2�

)
. (25)

In the fast driving limit T → 0 we keep t = 2NT
invariant and let N → ∞. According to the Trotter formula,
the evolution then becomes equivalent to zero voltage bias [32],
limT →0(eiĤa T eiĤbT )N = ei(Ĥa+Ĥb)T N . We find

Iα(t) = sα

2e�e−t

h

∫
dε n(ε)

e−t − cos εt − ε sin εt

ε2 + 1
. (26)

In figure 2 we show the transient currents in the left and right
leads for different periods T when μ = 0. The current
oscillations are suppressed when the frequency goes to infinity.
The I (t) curves gradually change from the dc limit to the high
frequency limit described by equation (26) when the period T
decreases. In the fast driving limit the left and right currents are
opposite to each other and both decay to zero with increasing
time.

4. Steady state behavior

When the time is much larger than 1/�, the current reaches its
steady state behavior. By taking N → ∞ we find this steady
state limit given by

Iα(τ ) = sα

e�

h

∫
dεk nk(|ξ̃kL|2 + |ξ̃kR|2 − 2 Im ξ̃kα), (27)

Figure 2. Time-dependent current for different switching periods T
of the ac voltage bias (top: infinitely fast driving, middle:
intermediate fast driving, bottom: dc case). Zero temperature and ac
voltage bias V = � in all graphs. The full lines denote the left lead
current, while the dashed lines the right lead current. The
hybridization is switched on at time t = 0. Notice the discontinuous
onset of the current at t = 0, which is due to the wide band limit for
the conduction band (a detailed discussion can be found in [2]).

where 0 � τ � T . In the first half-period we have

ξ̃kα = 1

εa
kα − i

+ sαV (e2iεT −iεa
kα τ−τ − eiεa

kα (T −τ)−T −τ )

(e2iεT − e−2T )(εa
kα − i)(εb

kα − i)
, (28)

and in the second half-period

ξ̃kα = 1

εb
kα − i

+ sαV (eiεb
kα (T −τ)−T −τ − e2iεT −iεb

kατ−τ )

(e2iεT − e−2T )(εa
kα − i)(εb

kα − i)
. (29)

From equations (28) and (29) one immediately verifies that the
steady state current satisfies Iα(τ ) = −Iᾱ(τ + T ) as expected
intuitively, where ᾱ denotes the opposite lead.

4.1. Linear response regime

In the linear response regime of small voltage bias a sinusoidal
signal drives a sinusoidal current with the same frequency,
and signals with different frequencies can be superimposed
linearly. Therefore we can factorize the rectangular signal
into a series of sinusoidal components and find the frequency-
dependent complex admittance of the system.

In the linear response regime the left lead current is equal
to the right lead one and can be expressed as a Landauer–
Büttiker-like formula:

lim
V →0

I (τ )

V
= e2

h

∫
dε n(ε)T (ε), (30)

where

T (ε) = 2ε�3

(ε2 + �2)2
− Im

[
2�2eiεT −iετ−τ

(eiεT + e−T )(ε − i�)2

]
. (31)

We Fourier-transform both the ac voltage signal and the
current. We define I (ωn) = ∫ 2T

0 dt eiωn t I (t) =

4



                                             

Figure 3. The linear admittance of a resonant level model for various
level positions μ (energy of the dot level with respect to the Fermi
energy in the leads) at zero temperature. The top graph shows the
absolute value of the admittance, the bottom one its phase.

2
∫ T

0 dτ eiωnτ I (τ ), where we use the property I (τ + T ) =
−I (τ ) and V (ωn) = ∫ 2T

0 dt eiωn t V (t). Here ωn = nπ
T and

n is an odd number. The voltage bias is −V for 0 � t � T and
V for T � t � 2T , leading to V (ωn) = 4V

iωn
. By adjusting T

the frequency ωn can be an arbitrary real number and the linear
response admittance G(ω) = I (ω)/V (ω) at zero temperature
is given by

G(ω) = e2

h

(
arccot −ω−μ

�
− arccot ω−μ

�

2ω/�

− i�

4ω
ln

(μ2 + �2)2

((μ + ω)2 + �2)((μ − ω)2 + �2)

)
, (32)

where μ denotes the position of the dot level with respect to the
average Fermi energy of the leads, see figure 1. Equation (32)
agrees with previous ac calculations in the linear response
regime, see [33]. Figure 3 depicts G(ω) for different level
positions μ. The admittance goes to zero for fast driving,

ω → ∞. For ω → 0 one recovers the well-known dc
conductance G = e2

h
�2

μ2+�2 . For asymmetric dot positions the
resonance peak is around ω = μ, showing the PAT (photon-
assisted tunneling) effect [14]: when the frequency of the ac
signal is equal to the energy difference of the dot level from
the Fermi energy in the leads, electrons in the leads can absorb
a photon and jump into the dot. Notice from figure 3 that
the symmetric dot always acts like an inductor, as already
explained in [33]. For asymmetric dots there is a crossover
from capacitive to inductive behavior around ω = μ [33].

4.2. Beyond the linear response regime

For a voltage bias beyond the linear response regime it
is impossible to calculate G(ω) by performing a Fourier
transformation since the different frequency components
interact with each other nonlinearly. Therefore we now depict
the behavior of the current I (t) as a function of time t during
one full period in the steady state situation. Due to the
nonlinearities we need to discuss this separately for different
driving periods T . We will always take zero temperature in
the following, so the generalization to nonzero temperature is
straightforward.

We first look at fast driving, T 	 �−1. For the
symmetric situation the I –t curve becomes triangled: the
current decreases from maximum to minimum in the first half-
period, and then increases from minimum to maximum in the
second half-period, see figure 4. In the opposite slow driving
limit T 
 �−1, the I –t curve becomes rectangled. The
saturated current in each half-period is simply given by the
corresponding steady dc current (25). For intermediate driving
speed, T ∼ �−1, we observe ringing oscillations [15] of the
current with period 4π/V (see figure 5).

For asymmetric dot positions μ �= 0 the current also
has characteristics of PAT and ringing, which are, however,
not easily visible in a plot like figure 6. Clear signatures
can be found in the differential conductance with respect
to the gate voltage, which we denote as gate differential

Figure 4. The steady state current in one period for fast driving (here T = 0.1/� and zero temperature) in a symmetric resonant level model
(μ = 0). The left figure depicts the current I (units e�/h) in the nonlinear regime and the right figure shows I/V (units e2/h) for smaller
voltage bias (linear response regime). Because the driving period is shorter than the time required to establish stationarity in one period, the
time-dependent current looks triangular.
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Figure 5. The steady state current in one period for intermediate driving (here T = 1/� and zero temperature) in a symmetric resonant level
model (μ = 0). The left figure depicts the current I (units e�/h) in the nonlinear regime, and the right figure shows I/V (units e2/h) for
smaller voltage bias (linear response regime). The oscillations of the current with period 4π/V (‘current ringing’ [15]) are clearly visible for
large bias.

Figure 6. The steady state current in one period for intermediate driving (here T = 1/� and zero temperature) in an asymmetric resonant
level model (μ = 5�). The left figure depicts the current I (units e�/h) in the nonlinear regime and the right figure shows I/V (units e2/h)
for smaller voltage bias (linear response regime). The crossover from capacitive to inductive response (compare figure 3) leads to a
complicated behavior of the current in the first half-period.

conductance Ggate to distinguish it from the usual definition
of differential conductance with respect to the voltage bias
between the leads. We define

Ggate
α (ε, τ )

def= dIα(τ )

dμ

∣∣∣∣
μ=ε

(33)

and the current can then be expressed as Iα(τ ) =∫ μ

−∞ dε Ggate
α (ε, τ ).

Figures 7 and 8 show Ggate in the first half-period (Ggate

in the second half-period follows via Ggate
2nd (ε) = Ggate

1st (−ε)).
In the linear response regime we find a pair of bright PAT
lines at ε = ±π/T (see figure 7). In the regime far from
equilibrium, high order PAT lines at ε = nπ/T (|n| � 2) can
be observed (see figure 8), indicating multiple photon-assisted
tunneling processes. These PAT lines combine and are replaced

by a pair of bright resonance lines at ε = ±V/2 when the
period increases. This demonstrates that ac transport for high
frequencies is dominated by photon-assisted tunneling, and by
resonance tunneling for low frequencies.

5. Conclusions

We have investigated a resonant level model driven by
rectangular ac bias in and beyond the linear response regime.
Even this simple model shows surprisingly rich behavior in its
transport properties. One can observe specific non-equilibrium
effects like the buildup of the steady state, current ringing
and photon-assisted tunneling, and the crossover to the well-
studied limiting cases of dc bias and linear response regime.
The results are exact and based on an explicit diagonalization

6



                                             

Figure 7. The gate differential conductance Ggate
L (ε, τ) (units e2/h) in the linear response regime (V = 0.2� and zero temperature) for period

T = 0.2/� in the left figure and T = 0.6/� in the right figure. The pair of bright lines symmetric to ε = 0 are the PAT lines at ε = ±π/T .

Figure 8. The gate differential conductance Ggate
L (ε, τ) (units e2/h) for large voltage bias (V = 20�) and zero temperature. The top left

figure shows fast driving (T = 0.2/�), T = 0.5/� in the top right figure, intermediate driving (T = 1/�) bottom left and slow driving
(T = 5/�) bottom right. The y axis denotes the energy ranging from −20� to 20�. For fast driving (T < 0.8/�) the higher-order PAT lines
are clearly visible. For slower driving (T > 0.8/�) the PAT lines away from ε = ±V/2 disappear with increasing T .

of the Hamiltonian in the first and second half-periods of the
rectangular voltage bias driving. Within the flow equation
framework, this approach can easily be generalized to an
interacting quantum impurity model exposed to ac driving
beyond the linear regime. Much less is known about such
systems, which provides another motivation for this work and
will be studied in a subsequent publication.
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[24] Moskalets M and Büttiker M 2002 Phys. Rev. B 66 205320
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