1,489 research outputs found

    Transient interfacial tension and dilatational rheology of diffuse polymer-polymer interfaces

    Get PDF
    We demonstrate the influence of molecular weight and molecular weightasymmetry across an interface on the transient behavior of the interfacial tension. The interfacial tension was measured as a function of time for a range of polymer combinations with a broadrange of interfacial properties using a pendant/ sessile drop apparatus. The results show that neglecting mutual solubility, assumed to be a reasonable approximation in many cases, very often does not sustain. Instead, a diffuse interface layer develops in time with a corresponding transient interfacial tension. Depending on the specific combination of polymers, the transient interfacial tension is found to increase or decrease with time. The results are interpreted in terms of a recently proposed model\cite{Shi_etal2004}, giving relativecharacteristic diffusion time scales in terms of molecular weight, molecular weight distribution and viscosities. However, the time scales obtained from this theoretical approach do not give a conclusive trend. Using oscillatory dilatational interfacial experiments the viscoelastic behavior of these diffusive interfaces is demonstrated. The time evolution of the interfacial tension and thedilatational elasticity show the same trend aspredicted by the theory of diffuse interfaces, supporting the idea that the polymer combinations under consideration indeed form diffuse interfaces. The dilatational elasticity and the dilatationalviscosity show a frequency dependency that is described qualitatively by a simple Fickian diffusion model and quantitatively by a Maxwell model. The characteristic diffusion times provided by the lattershow that the systems with thick interfaces (tens of micrometers and more) can be considered as slowdiffusive systems while the systems with thinner interfaces (a few micrometers and less) can be considered as fast diffusive systems

    TRIANGULATION OF THE INTERSTELLAR MAGNETIC FIELD

    Get PDF
    Determining the direction of the local interstellar magnetic field (LISMF) is important for understanding the heliosphere's global structure, the properties of the interstellar medium, and the propagation of cosmic rays in the local galactic medium. Measurements of interstellar neutral atoms by Ulysses for He and by SOHO/SWAN for H provided some of the first observational insights into the LISMF direction. Because secondary neutral H is partially deflected by the interstellar flow in the outer heliosheath and this deflection is influenced by the LISMF, the relative deflection of H versus He provides a plane—the so-called B–V plane in which the LISMF direction should lie. Interstellar Boundary Explorer (IBEX) subsequently discovered a ribbon, the center of which is conjectured to be the LISMF direction. The most recent He velocity measurements from IBEX and those from Ulysses yield a B–V plane with uncertainty limits that contain the centers of the IBEX ribbon at 0.7–2.7 keV. The possibility that Voyager 1 has moved into the outer heliosheath now suggests that Voyager 1's direct observations provide another independent determination of the LISMF. We show that LISMF direction measured by Voyager 1 is >40° off from the IBEX ribbon center and the B–V plane. Taking into account the temporal gradient of the field direction measured by Voyager 1, we extrapolate to a field direction that passes directly through the IBEX ribbon center (0.7–2.7 keV) and the B–V plane, allowing us to triangulate the LISMF direction and estimate the gradient scale size of the magnetic field

    Polyhedral Cosmic Strings

    Full text link
    Quantum field theory is discussed in M\"obius corner kaleidoscopes using the method of images. The vacuum average of the stress-energy tensor of a free field is derived and is shown to be a simple sum of straight cosmic string expressions, the strings running along the edges of the corners. It does not seem possible to set up a spin-half theory easily.Comment: 15 pages, 4 text figures not include

    Search for magnetic monopoles and stable particles with high electric charges in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    We present a search for magnetic monopoles and high-electric-charge objects using LHC Run 2 √s = 13 TeV proton-proton collisions recorded by the ATLAS detector. A total integrated luminosity of 138 fb−1 was collected by a specialized trigger. No highly ionizing particle candidate was observed. Considering the Drell-Yan and photon-fusion pair production mechanisms as benchmark models, cross-section upper limits are presented for spin-0 and spin-1/2 magnetic monopoles of magnetic charge 1gD and 2gD and for high-electric-charge objects of electric charge 20 ≤ |z| ≤ 100, for masses between 200 GeV and 4000 GeV. The search improves by approximately a factor of three the previous cross-section limits on the Drell-Yan production of magnetic monopoles and high-electric charge objects. Also, the first ATLAS limits on the photon-fusion pair production mechanism of magnetic monopoles and high-electric-charge objects are obtained

    Pulsed flows at the high-altitude cusp poleward boundary, and associated ionospheric convection and particle signatures, during a cluster - FAST - SuperDARN - sondrestrom conjunction under a southwest

    Get PDF
    Particle and magnetic field observations during a magnetic conjunction Cluster 1-FAST-Søndrestrøm within the field of view of SuperDARN radars on 21 January 2001 allow us to draw a detailed, comprehensive and self-consistent picture at three heights of signatures associated with transient reconnection under a steady south-westerly IMF (clock angle ≈130◦). Cluster 1 was outbound through the high altitude (∼12RE ) exterior northern cusp tailward of the bifurcation line (geomagnetic Bx>0) when a solar wind dynamic pressure release shifted the spacecraft into a boundary layer downstream of the cusp. The centerpiece of the investigation is a series of flow bursts observed there by the spacecraft, which were accompanied by strong field pertur- bations and tailward flow deflections. Analysis shows these to be Alfven waves. We interpret these flow events as being due to a sequence of reconnected flux tubes, with field-aligned currents in the associated Alfven waves carrying stresses to the underlying ionosphere, a view strengthened by the other observations. At the magnetic footprint of the region of Cluster flow bursts, FAST observed an ion energy- latitude disperison of the stepped cusp type, with individual cusp ion steps corresponding to individual flow bursts. Simultaneously, the SuperDARN Stokkseyri radar observed very strong poleward-moving radar auroral forms (PMRAFs) which were conjugate to the flow bursts at Cluster. FAST was traversing these PMRAFs when it observed the cusp ion steps. The Søndrestrøm radar observed pulsed ionospheric flows (PIFs) just poleward of the convection reversal boundary. As at Cluster, the flow was eastward (tailward), implying a coherent eastward (tailward) motion of the hypothesized open flux tubes. The joint Søndrestrøm and FAST observations indicate that the open/closed field line boundary was equatorward of the convection reversal boundary by ∼2 deg. The unprecedented accuracy of the conjunction argues strongly for the validity of the interpretation of the various signatures as resulting from transient reconnection. In particular, the cusp ion steps arise on this pass from this origin, in consonance with the original pulsating cusp model. The observations point to the need of extending current ideas on the response of the ionosphere to transient reconnection. Specifically, it argues in favor of re-establishing the high-latitude boundary layer downstream of the cusp as an active site of momentum transfer

    Fluorescence resonance energy transfer between organic dyes adsorbed onto nano-clay and Langmuir-Blodgett (LB) films

    Full text link
    In this communication we investigate two dyes N,N' -dioctadecyl thiacyanine perchlorate (NK) and octadecyl rhodamine B chloride (RhB) in Langmuir and Langmuir-Blodgett (LB) films with or with out a synthetic clay laponite. Observed changes in isotherms of RhB in absence and presence of nano-clay platelets indicate the incorporation of clay platelets onto RhB-clay hybrid films. AFM image confirms the incorporation of clay in hybrid films. FRET was observed in clay dispersion and LB films with and without clay. Efficiency of energy transfer was maximum in LB films with clay.Comment: 15 pages 5 figures, 1 tabl

    Search for vector-boson resonances decaying into a top quark and a bottom quark using pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for a new massive charged gauge boson, W′, is performed with the ATLAS detector at the LHC. The dataset used in this analysis was collected from proton-proton collisions at a centre-of-mass energy of √s = 13 TeV, and corresponds to an integrated luminosity of 139 fb−1. The reconstructed tb invariant mass is used to search for a W′ boson decaying into a top quark and a bottom quark. The result is interpreted in terms of a W′ boson with purely right-handed or left-handed chirality in a mass range of 0.5–6 TeV. Different values for the coupling of the W′ boson to the top and bottom quarks are considered, taking into account interference with single-top-quark production in the s-channel. No significant deviation from the background prediction is observed. The results are expressed as upper limits on the W′ → tb production cross-section times branching ratio as a function of the W′-boson mass and in the plane of the coupling vs the W′-boson mass
    corecore