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ABSTRACT

Determining the direction of the local interstellar magnetic field (LISMF) is important for understanding the
heliosphere’s global structure, the properties of the interstellar medium, and the propagation of cosmic rays in the
local galactic medium. Measurements of interstellar neutral atoms by Ulysses for He and by SOHO/SWAN for H
provided some of the first observational insights into the LISMF direction. Because secondary neutral H is partially
deflected by the interstellar flow in the outer heliosheath and this deflection is influenced by the LISMF, the relative
deflection of H versus He provides a plane—the so-called B–V plane in which the LISMF direction should lie.
Interstellar Boundary Explorer (IBEX) subsequently discovered a ribbon, the center of which is conjectured to be
the LISMF direction. The most recent He velocity measurements from IBEX and those from Ulysses yield a B–V
plane with uncertainty limits that contain the centers of the IBEX ribbon at 0.7–2.7 keV. The possibility that
Voyager 1 has moved into the outer heliosheath now suggests that Voyager 1ʼs direct observations provide another
independent determination of the LISMF. We show that LISMF direction measured by Voyager 1 is >40° off from
the IBEX ribbon center and the B–V plane. Taking into account the temporal gradient of the field direction
measured by Voyager 1, we extrapolate to a field direction that passes directly through the IBEX ribbon center
(0.7–2.7 keV) and the B–V plane, allowing us to triangulate the LISMF direction and estimate the gradient scale
size of the magnetic field.
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1. INTRODUCTION

The local interstellar magnetic field (LISMF) potentially has
strong influences on the global heliosphere (e.g., Opher
et al. 2006; Pogorelov et al. 2007, 2009; Ratkiewicz
et al. 2012). However, for many years, the direction and
strength of the LISMF has remained an enigma.

One of the first observational insights that constrained the
direction of the interstellar magnetic field direction to a plane
(Lallement et al. 2005) came from comparison of the velocities
of interstellar He (Witte et al. 1996, 2004; Witte 2004;
Lallement et al. 2005; Bzowski et al. 2014; Leonard et al. 2015;
McComas et al. 2015; Möbius et al. 2015; Schwadron
et al. 2015) and interstellar H (Wood et al. 2007; Lallement
et al. 2010) measured in the heliosphere. The H inflow
direction is more strongly affected by secondary interactions in
the heliosheath than the He inflow. As a result, the difference
between the H and He velocity vectors specifies a plane that
breaks the symmetry of plasma deflection in the outer
heliosheath due to the influences of the LISMF. Therefore,
the plane containing both the neutral H and He velocity vectors
inside the heliosphere should contain the LISMF direction
(Lallement et al. 2005).

Voyager 1 observations shortly after it crossed the termina-
tion shock showed the presence of ions streaming from the
shock (Decker et al. 2005; Stone et al. 2005) indicating
asymmetries of the heliosphere possibly induced by the
interstellar magnetic field (Opher et al. 2006). Subsequent
observations from Voyager 2 confirmed an asymmetric
termination shock (Stone et al. 2008) also consistent with the
influence from a relatively strong (>3 μG) interstellar magnetic
field tilted well out of the ecliptic plane (Opher et al. 2009).

Further insight into the LISMF direction came with new
discoveries by the Interstellar Boundary Explorer Mission
(IBEX), launched 2008 October, with the objective to discover
the global interaction between the solar wind and the local
interstellar medium (LISM) (McComas et al. 2009b). IBEX
measures neutral atoms in the energy range of ∼0.01–6 keV.
In the keV energy range, the hydrogen energetic neutral atoms
(ENAs) detected by IBEX are created predominantly from
charge-exchange between neutral interstellar hydrogen and
plasma protons in the heliosheath (McComas et al. 2009b,
2011). The IBEX-Lo sensor also measures neutral atoms
including oxygen, helium and hydrogen coming directly from
the LISM (Möbius et al. 2009).
One of the first key discoveries by IBEX was the existence of

a narrow ribbon of higher flux ENA emissions (Funsten et al.
2009; Fuselier et al. 2009; McComas et al. 2009a). The ribbon
is nearly circular with its center varying by ∼11° over the
measured energy range (Funsten et al. 2013). An informed
conjecture was made shortly after the ribbon’s discovery that
the center of the IBEX ribbon defines the direction of the
LISMF (Schwadron et al. 2009). In fact, the direction roughly
perpendicular to the LISMF derived from a pre-existing
heliosphere model (Pogorelov et al. 2009) showed remarkably
good qualitative correlation with the directions of strongest
ribbon flux enhancements. The model (Pogorelov et al. 2009)
on which this correlation was based was designed specifically
to account for heliospheric asymmetries observed by Voyager
1/2 and 2–3 kHz Radio Emission in the limit of a strong
LISMF (>3 μG).
The physical mechanism for the ribbon remains an area of

active research (McComas et al. 2014). Until the physics of the
ribbon generation is understood, it will be difficult to know
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how the LISMF direction is related in detail to the IBEX ribbon.
A number of heliospheric models have been devised with the
property that the ribbon is highly sensitive to the LISMF
direction (Frisch et al. 2010; Heerikhuisen et al. 2010;
Ratkiewicz et al. 2012; Schwadron & McComas 2013b;
Heerikhuisen et al. 2014).

Another part of the puzzle concerning the LISMF should, at
least in principle, be deciphered from Voyager 1 observations
and eventually from Voyager 2 observations. The Voyager 1
and 2 spacecraft continue to move outward from the Sun into
the outermost reaches of our heliosphere. There is believed to
be a boundary separating the solar wind from the interstellar
plasma called the heliopause, which was expected to be marked
by a large increase in plasma density, from ∼0.002 cm3 in the
inner heliosheath inside the heliopause, to ∼0.1 cm3 in the
interstellar medium beyond the heliopause. On 2013 April 9,
Voyager 1ʼs plasma wave instrument detected electron plasma
oscillations at a frequency of ∼2.6 kHz. These oscillations are
created relatively close to the spacecraft and have a frequency
that can be used to determine the electron density of the nearby
plasma. This electron density was found to be ∼0.08 cm3,
orders of magnitude larger than typical densities in the inner

heliosheath, and quite similar to the expected interstellar
density. These observations provide evidence that Voyager 1
had crossed the heliopause into the nearby interstellar medium
(Gurnett et al. 2013).
The first indications that Voyager 1 may have crossed the

heliopause were observations made on 2012 July 28 at 121 by
the Low Energy Charged Particle and Cosmic Ray (CRS)
instruments, which showed abrupt decreases in the fluxes of
energetic particles (EPs, termed “termination shock particles,”
TSPs). In addition, anomalous cosmic rays (ACRs; Krimigis
et al. 2013; Stone et al. 2013; Webber & McDonald 2013) also
showed sharp decreases. The decreases in TSPs and ACRs
were correlated with prompt increases in the galactic cosmic
ray (GCR) intensities (Stone et al. 2013; Webber &
McDonald 2013), which again suggested that the spacecraft
had entered interstellar space where GCR intensities are
strongest since GCRs are accelerated in the galactic medium
and leak into the heliosphere as they scatter through the solar
wind’s magnetic field. Five similar crossings of the boundary
were observed by Voyager 1 between 2012 July 28 and
August 25.
The Voyager 1 magnetometer (MAG) observations (e.g.,

Burlaga et al. 2005; Burlaga & Ness 2013), however, have, at
least initially, complicated the interpretation that Voyager 1 had
crossed back and forth across the heliopause and eventually
entered interstellar space outside the solar wind. Although these
boundary crossings showed sharp changes in observed
magnetic field strength, the magnetic field direction remained
relatively constant and roughly consistent with the spiral
magnetic structure observed throughout the inner heliosheath.
The magnetic field in the LISM (Lallement et al. 2005; Opher
et al. 2006; Pogorelov et al. 2009; Frisch et al. 2012; Frisch &
Schwadron 2014) is expected to be different than the inner
heliosheath’s magnetic field. It was therefore predicted that the
crossing of the heliopause should be accompanied by both
abrupt changes in the magnetic field magnitude and a strong
rotation in the magnetic field direction.
The puzzling lack of a magnetic field rotation at the

heliopause led to a number of alternative interpretations of the
Voyager 1 boundary crossings. Schwadron & McComas
(2013a) suggested that Voyager 1 had moved through
“interstellar flux transfer events” (IFTEs), which are analogous
to flux transfer events observed at the magnetosphere and
associated with magnetic reconnection at the magnetopause
(e.g., Russell & Elphic 1979; Fuselier & Lewis 2011;
Tkachenko et al. 2011; Zhang et al. 2011; Fear et al. 2012).
IFTEs are magnetically reconnected flux tubes, which
Voyager 1 may have passed through as it approached the
heliopause. IFTEs provide magnetic connection to the inter-
stellar medium, while maintaining a similar magnetic structure
to that inside the heliopause. The magnetic connection would
cause dropouts in ACRs and EPs. The magnetic connection
also allows access to the interstellar medium leading to
enhancements in GCRs. Another interpretation offered by
Gloeckler & Fisk (2015) is that the boundary crossings of
Voyager 1 indicated passage into an outer envelope of the inner
heliosheath inside the heliopause. Within this envelope
pressure balance is maintained by the bulk solar wind, while
suprathermal and EPs have escaped.
Voyager 1 has continued to observe the magnetic config-

uration observed near the initial boundary crossings, and the
EPs and ACRs remain suppressed while GCRs remain

Figure 1. Interstellar magnetic field observed by Voyager 1 over a period from
2013/130.6 to 2014/232.3 when the magnetic field magnitude (upper panel)
remained roughly constant and the field direction changed steadily. We show
the field direction in heliocentric (J2000) ecliptic coordinates and find the best
linear fit to the data to infer the change in direction over time.
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enhanced. In fact, the magnetic field has shown some steady
changes, which Burlaga & Ness (2014) argue is associated with
draping of the interstellar magnetic field about the heliopause.
If correct, the interpretation suggests that the Voyager 1
spacecraft should observe the most strongly draped field
configuration shortly after the crossing of the heliopause. Then,
as Voyager 1 moves outward further away from the heliopause,
it should observe the draped field relax to the undisturbed
interstellar field configuration, as recently indicated through a
simple analytic flow model for the heliosphere (Isenberg
et al. 2015) and with global heliospheric modeling (Zirnstein
et al. 2015).

The purpose of our paper is simply to place the four different
observations from Ulysses, IBEX, SOHO/SWAN, and
Voyager 1 into the same context to test our understanding of
the interstellar magnetic field direction. Section 2 shows how
these observations can be used to triangulate the direction of
the LISMF. Section 3 discusses the implications of these
observations for our understanding of the source of the ribbon
and the properties of the LISM.

2. TRIANGULATION OF MAGNETIC
FIELD OBSERVATIONS

We begin by examining the Voyager 1 observations of the
interstellar magnetic field, assuming that Voyager 1 did in fact
move beyond the heliopause in 2012. Burlaga & Ness (2014)
examined the magnetic field data carefully and found an
interval between 2013/130.6 and 2013/365.3 when the field
strength remained relatively steady and the direction of the field
underwent steady change. In subsequent work, Burlaga et al.
(2015) studied a longer period of relatively quiet field
conditions to determine the interstellar turbulence spectrum.
We have used this extended interval from 2013/130.6 to 2014/
232.3 over which period the interstellar magnetic field strength
remained quite steady and the direction of the field continued to
change steadily. Figure 1 shows the field direction in
heliocentric (J2000) ecliptic coordinates. We have fit a straight
line to the data using minimization of the χ2 deviation between
observations and the straight line:

ℓ t ℓ ℓ t t 10 0( ) ( ) ( )= + ¢ -

b t b b t t . 20 0( ) ( ) ( )= + ¢ -

Here, ℓ t( ) is the ecliptic longitude field direction at time t and
ℓ 171. 47 0. 020 =   is the ecliptic longitude field direction at
time t0 = 2014. The change in ecliptic longitude field direction
over time is ℓ 4. 51¢ =  0. 04  yr−1. The quantity b(t) is the
ecliptic latitude field direction at time t, b 30. 67 0. 020 =   at
time t0 = 2014, and the change in ecliptic latitude over time is
b′ = 0°.84± 0°.04 yr−1.

We test the significance of derived slopes by running a t-test
for the “null” hypothesis—the probability of the existence of a
zero slope. For the zero slope in longitude, we find a t-value of
116.8 with 4879 degrees of freedom. The probability of the
zero slope is vanishingly small (<1.0 × 10−300). In the case of
the zero slope in latitude, the t-value is 21.6 and the degrees of
freedom remain at 4879. The probability of the zero latitude
slope is also vanishingly small (<6 × 10−99). Therefore, both
the slopes in longitude and latitude are extremely statistically
significant.

We show these straight line fits to the Voyager 1 magnetic
field observations together with the B–V plane limits, the

directions and uncertainties of the IBEX ribbon centers in
hydrogen ENAs (Figure 2). These directions are all shown in
heliocentric (J2000) ecliptic coordinates. The straight line fits
to Voyager 1 data are projected forward in time and converge
with the IBEX ribbon center at 0.7–2.7 keV on the date of
2024.7 when Voyager 1 will be at ∼164.6 AU from the Sun.
Notably, the center of the IBEX ribbon at 4.3 keV is quite

different from the ribbon centers at 2.7 keV and below. This is
partially the result of significant broadening of the ribbon at
4.3 keV (Schwadron et al. 2014). Another important factor is
simply that the ribbon fails to remain a coherent structure at this
energy.
The IBEX He observations (in blue) used in Figure 2 from

Schwadron et al. (2015) are derived from an extended analysis
over the mission’s first five years. These results are consistent
with other complimentary IBEX studies performed recently
(Bzowski et al. 2015; Leonard et al. 2015; McComas et al.
2015). Collectively, this work provides a significant improve-
ment in our understanding of interstellar He parameters from
IBEX data (e.g., Bzowski et al. 2012; Möbius et al. 2012).
According to the most recent analyses of IBEX and Ulysses ISN
flow observations (Wood et al. 2015) the resulting velocity
vectors agree within the uncertainties, but the interstellar
temperature is now substantially higher than given by Witte
(2004). For the triangulation in Figure 2, the velocity vector of

Figure 2. We combine four different sets of observations to determine the
direction of the interstellar magnetic field. The red line shows the linear fit to
Voyager 1 observations of the interstellar magnetic field. This linear fit is
projected forward in time (the red circles surrounding a “V” show discrete
points in time along the Voyager trajectory). The H flow direction from
SOHO/SWAN (Lallement et al. 2005, 2010) is shown with the He flow
direction derived by Schwadron et al. (2015) in blue. The H inflow is more
strongly deflected by secondary interactions in the heliosheath than the He
inflow. Therefore, the BISM–VISM plane contains the deflection of H relative to
He (Lallement et al. 2005). The region bounded by the dark blue dashed curves
shows the limits of the BISM–VISM plane, which contains the orientation of the
IBEX ribbon (Funsten et al. 2013) from 0.7 to 2.7 keV. The purple closed circle
shows the He inflow direction based on the most recent analysis of Ulysses ISN
flow observations (Wood et al. 2015). The purple line shows the corresponding
B–V plane connecting the Ulysses He and SOHO/SWAN H observations. The
center (closed black circles) of the IBEX ribbon is shown at separate energy
steps observed by the Hi sensor on IBEX. The projected interstellar field
direction from Voyager 1 converges with the 1.7 keV IBEX ribbon center on
the date of 2024.7. The light blue region shows the extent of the intersections
between the B–V plane and the Voyager 1 projection. This region of
intersection contains the IBEX ribbon centers from 0.7 to 2.7 keV,
demonstrating the successful triangulation of these distinct data sets.
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Ulysses (purple closed circle) provides a B–V plane (purple
line) that almost matches the B–V plane from IBEX (blue line).

The light blue shaded region in Figure 2 shows the region of
intersection between the Voyager 1 projected field direction
and the B–V plane. These projections extend to points in time
from 2022.8 to 2030 when Voyager 1 will be between 158 and
184 AU. These results suggest that field draping in the outer
heliosheath extends across a region (along the Voyager 1
trajectory) in the range of 37–63 AU. If the convergence of the
Voyager 1 projection to the 1.7 keV IBEX ribbon center holds,
this would indicate the draping region is 43.6 AU along the
Voyager 1 trajectory. However, these extents of the draping
region are only approximate as they neglect the effect of time
variations and the possibility that the projection of the field
direction is not linear.

The convergence of the extent of the B–V plane, the
directions of the IBEX ribbon center at 0.7–2.7 keV, and the
projection of the Voyager 1 field direction represents a
triangulation of the field direction. The data sets used to derive
the triangulation are quite distinct. This strengthens the
conclusion that the triangulated field direction is in fact an
accurate representation of the true interstellar field direction.

3. SUMMARY AND CONCLUSIONS

We have examined the direction of the interstellar magnetic
from three distinct observational vantage points: (1) inflowing
interstellar H is more strongly affected by secondary interac-
tions in the outer heliosheath than interstellar He. Interstellar H
is therefore deflected relative to He and the deflection vector
should lie within a plane (the B–V plane) that contains the
interstellar magnetic field vector (Lallement et al. 2005); (2) the
center of the IBEX ribbon, which is believed to be oriented
parallel to the interstellar magnetic field; and (3) the
observations by Voyager 1 of the steady undraping of the
magnetic field after it crossed the heliopause late in 2012. We
have used these independent observations to triangulate a
unique orientation for the undisturbed interstellar mag-
netic field.

The triangulated field direction appears very consistent with
the direction at the center of the IBEX ribbon, and is
particularly close to the ribbon center at 0.7–2.7 keV. There
are large inherent uncertainties. For example, the extrapolation
of the field direction from Voyager 1 observations is linear.
However, Voyager 1 has remained within the outer heliosheath
over a relatively short observational period. It is therefore
unclear whether a linear extrapolation will continue to hold.
The linear projection suggests that Voyager 1 could observe a
field direction at the IBEX ribbon center by ∼2025 when the
spacecraft is at ∼165 AU from the Sun. These predictions
warrant careful further analysis of Voyager 1 data in coming
years. In addition, when Voyager 2 crosses the heliopause, we
may be able to add a fourth observational vantage point from
which to compare projections of the interstellar field direction.

Thus, our triangulation of the interstellar magnetic field
provides new support indicating both that Voyager 1 is
currently in the outer heliosheath beyond the heliopause and
that the interstellar magnetic field direction is at the center of
the IBEX ribbon. This analysis strongly supports the conclusion
of Burlaga & Ness (2014) that the steady changes in magnetic
field orientation observed by Voyager 1 during quiet periods
after it crossed the heliopause were in fact indications of the
undraping of the interstellar magnetic field, as modeled by

Zirnstein et al. (2015). The IBEX ribbon center as the direction
of the LISMF is consistent with the interstellar field direction
obtained from locally, polarized starlight (Frisch et al. 2015).
This implies that the ordering of the interstellar field persists
over much larger spatial scales than that of the heliosphere.
Further, these results strengthen the conclusion that the
anisotropies in TeV cosmic rays are organized by this field
direction over many parsecs in the local galactic environment
(Schwadron et al. 2014).
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supported by NASA contract NNG14PN24Pa.
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