182 research outputs found

    Crustal structure between the Knipovich Ridge and the Van Mijenfjorden (Svalbard)

    Get PDF
    The Alfred Wegener Institute of Polar and Marine Research, the University of Bergenand the Hokkaido University acquired new seismic refraction data along a transect fromthe Knipovich Ridge to the inner Van Mijenfjorden in southern Svalbard. A close spacing ofon- and offshore receivers and a dense marine shot pattern provide the data for a high resolutionp-wave velocity model for geological interpretation. Additional new seismic reflection data(University of Bergen) yield structural information for a more reliable analysis.Crustal thickness along the Van Mijenfjorden is 33 to 34 km. Seismic velocities of 5.0 km/sare observed within the upper crustal section of the Tertiary Central Spitsbergen Basin.A Paleozoic sedimentary basin with a depth of 8 to 10 km is associated with the Nordfjorden Block.The seismic velocities are up to 6.0 km/s. Paleozoic sedimentary rocks are expected furtherto the west of the Hornsund Lineament since seismic velocities reveal a similar range here.West of the Bellsund the continental crust thins gradually over a 90 km wide rifted zone.The velocity structure within this section is very complex and comprises zones of decreasedvelocities below the West Spitsbergen Fold Belt (down to 20 km depth) and slightly elevatedvelocities (7.2 km/s) at the crust-mantle transition. The first structure is interpreted as intensivelyfractured rocks linked to post-Late Paleocene transpressive orogenic activity and subsequentlyaffected by transtension during break-up from Greenland. The faster deep-crustal velocities aresupposed to express magmatic intrusions of an unidentified origin. Melts could either be channelled by theSpitsbergen Shear Zone from more distant sources, or originate in magmatic interaction between the northern Knipovich Ridgeand the neighbouring young rifted crust.Oceanic crust each side of the Knipovich Ridge is thin (~3.5 km) and is characterised by theabsence of oceanic layer 3 (3.5/4.1 to 4.7 km/s). The oceanic section exhibits zones of verythin crust (~1 km) that are interpreted as fracture zones. Beneath these we observed decreasedmantle velocities (~7.3 km/s) indicating probable serpentinization of peridotites along thesefracture zones. Thickness variations further provide information about the segmentationand magma supply along the northern Knipovich Ridge

    BIOPHYSICAL SIMULATION IN SUPPORT OF CROP PRODUCTION DECISIONS: A CASE STUDY IN THE BLACKLANDS REGION OF TEXAS

    Get PDF
    Economic feasibility of Texas Blacklands corn production in relation to sorghum, wheat, and cotton is studied. Biophysical simulation generated yield data are integrated with an economic decision model using quadratic programming. Given the various scenarios analyzed, corn is economically feasible for the Blacklands. A crop mix of half corn and half cotton production is selected under risk neutrality with wheat entering if risk aversion is present. Corn and grain sorghum production are highly substitutable. Profit effects attributed to changing corn planting dates are more pronounced than profit changes resulting from altering corn population or maturity class.Crop Production/Industries,

    Crustal structure beneath the Trondelag Platform and adjacent areas of the Mid-Norwegian margin, as derived from wide-angle seismic and potential field data

    Get PDF
    The outer mid-Norwegian margin is characterized by strong breakup magmatism and has been extensively surveyed. The crustal structure of the inner continental shelf, however, is less studied, and its relation to the onshore geology, Caledonian structuring, and breakup magmatism remains unclear. Two Ocean Bottom Seismometer profiles were acquired across the Trøndelag Platform in 2003, as part of the Euromargins program. Additional-land stations recorded the marine shots. The P-wave data were modeled by ray-tracing, supported by gravity modeling. Older multi-channel seismic data allowed for interpretation of stratigraphy down to the top of the Triassic. Crystalline basement velocity is ~6 km s-1 onshore. Top basement is difficult to identify offshore, as velocities (5.3-5.7 km s-1) intermediate between typical crystalline crust and Mesozoic sedimentary strata appear 50-80 km from the coast. This layer thickens towards the Klakk-Ytreholmen Fault Complex and predates Permian and later structur-ing. The velocities indicate sedimentary rocks, most likely Devonian. Onshore late- to post-Caledonian detachments have been proposed to extend offshore, based on the magnetic anomaly pattern. We do not find the expected correlation between upper basement velocity structure and detachments. However, there is a distinct, dome-shaped lower-crustal body with a velocity of 6.6-7.0 km s-1. This is thickest under the Froan Basin, and the broad magnetic anomaly used to delineate the detachments correlates with this. The proposed offshore continuation of the detachments thus appears- unreliable. While we find indications of high density and velocity (~7.2 km s-1) lower crust under the Rås Basin, similar to the proposed igneous underplating of the outer margin, this is poorly constrained near the end of our profiles. The gravity field indicates that this body may be continuous from the pre-breakup basement structures of the Utgard High to the Frøya High, suggesting that it could be an island arc or oceanic terrane-accreted during the Caledonian orogeny. Thus, we find no clear evidence of early Cenozoic igneous underplating of the inner part of the shelf

    Isoëtes sabatina (Isoëtaceae, Lycopodiopsida): Taxonomic distinctness and preliminary ecological insights

    Get PDF
    Isoëtes sabatina is the rarest aquatic quillwort in Europe. Although recently found (2013) in Lake Bracciano (central Italy), the species is just one step away from extinction with an estimated population not exceeding 400 individuals and a spatial range of a few hundred square metres. Lake Bracciano is a deep, oligo-mesotrophic Mediterranean volcanic lake that has been subjected to human activities. From January to October 2017, the lake experienced a dramatic water level decrease (up to −1.50 m), which significantly affected the littoral zone and the habitat of I. sabatina. To improve the chances of survival of I. sabatina, the first eco-taxonomic investigation on this species was carried out to describe its genetic distinctness, physical and chemical requirements and companion species. The phylogenetic position of I. sabatina was investigated by applying standard DNA barcoding methods. Simultaneously, during summer 2019, the physical and chemical features of water and sediments of the I. sabatina population and five small Alpine lakes colonized by Isoëtes echinospora – a supposed close relative – were characterized. These data were then compared with the available data on the trophic requirements of the target obligate aquatic Isoëtes, together with Isoëtes lacustris and Isoëtes malinverniana. The present survey confirmed the taxonomic and ecological distinctness of I. sabatina – providing the first evidence of genetic differentiation from I. echinospora. Isoëtes sabatina grows in waters with temperature, conductivity and total alkalinity up to 30°C, 561 μS cm−1 and 3.45 meq L−1, respectively. The edaphic requirements of I. sabatina confirm its outstanding conservation value, and this study offers a basic understanding of how to prevent its extinction. Now, all possible actions must be taken immediately to save this species

    A new tectono-magmatic model for the Lofoten/Vesterålen Margin at the outer limit of the Iceland Plume influence

    Get PDF
    Highlights • The Lofoten/Vesterålen margin has less Early Cenozoic lava flows than believed. • Breakup of the L/V margin is delayed ∼1 m.y. from the Vøring Plateau to the south. • Late arrival of the Iceland Plume may explain delayed breakup and prolonged extension. The Early Eocene continental breakup was magma-rich and formed part of the North Atlantic Igneous Province. Extrusive and intrusive magmatism was abundant on the continental side, and a thick oceanic crust was produced up to a few m.y. after breakup. However, the extensive magmatism at the Vøring Plateau off mid-Norway died down rapidly northeastwards towards the Lofoten/Vesterålen Margin. In 2003 an Ocean Bottom Seismometer profile was collected from mainland Norway, across Lofoten, and into the deep ocean. Forward/inverse velocity modeling by raytracing reveals a continental margin transitional between magma-rich and magma-poor rifting. For the first time a distinct lower-crustal body typical for volcanic margins has been identified at this outer margin segment, up to 3.5. km thick and ∼50. km wide. On the other hand, expected extrusive magmatism could not be clearly identified here. Strong reflections earlier interpreted as the top of extensive lavas may at least partly represent high-velocity sediments derived from the shelf, and/or fault surfaces. Early post-breakup oceanic crust is moderately thickened (∼8. km), but is reduced to 6. km after 1. m.y. The adjacent continental crystalline crust is extended down to a minimum of 4.5. km thickness. Early plate spreading rates derived from the Norway Basin and the northern Vøring Plateau were used to calculate synthetic magnetic seafloor anomalies, and compared to our ship magnetic profile. It appears that continental breakup took place at ∼53.1. Ma, ∼1. m.y. later than on the Vøring Plateau, consistent with late strong crustal extension. The low interaction between extension and magmatism indicates that mantle plume material was not present at the Lofoten Margin during initial rifting, and that the observed excess magmatism was created by late lateral transport from a nearby pool of plume material into the lithospheric rift zone at breakup time

    Ecosystem effects of thermal manipulation of a whole lake, Lake Breisjøen, southern Norway (THERMOS project)

    Get PDF
    International audienceWe conducted a 3-year artificial deepening of the thermocline in the dimictic Lake Breisjøen, southern Norway, by means of a large submerged propeller. An adjacent lake served as untreated reference. The manipulation increased thermocline depth from 6 to 20 m, caused a significant increase in the heat content, and delayed ice-on by about 20 days. There were only minor changes in water chemistry. Concentrations of sulphate declined, perhaps due to greater reduction of sulphate at the sediment-water interface. Concentrations of particulate carbon and nitrogen decreased, perhaps due to increased sedimentation velocity. Water transparency increased. There was no significant change in concentration of phosphorus, the growth-limiting nutrient. There were few significant changes in principal biological components. Phytoplankton biomass and productivity did not change, although the chlorophyll-a concentration showed a small decrease. Phytoplankton species richness increased, and the species composition shifted. Growth of periphyton increased. There was no change in the macrophyte community. The manipulation did not affect the zooplankton biodiversity, but caused a significant shift in the relative abundance (measured as biomass) in the two major copepod species. The manipulation did not affect the individual density, but appeared to have changed the vertical distribution of zoobenthos. Fish populations were not affected. The lake is oligotrophic and clearwater and the manipulation did not change the supply of phosphorus, and thus there were only minor changes in lake chemistry and biology. Effects might be larger in eutrophic and dystrophic lakes in which internal processes are stronger
    corecore