67 research outputs found

    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family

    Get PDF
    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future

    Alteration of chondroitin sulfate composition on proteoglycan produced by knock-in mouse embryonic fibroblasts whose versican lacks the A subdomain

    Get PDF
    Versican/proteoglycan-mesenchymal (PG-M) is a large chondroitin sulfate (CS) proteoglycan of the extracellular matrix (ECM) that is constitutively expressed in adult tissues such as dermis and blood vessels. It serves as a structural macromolecule of the ECM, while in embryonic tissue it is transiently expressed at high levels and regulates cell adhesion, migration, proliferation, and differentiation. Knock-in mouse embryonic (Cspg2Ξ”3/Ξ”3) fibroblasts whose versican lack the A subdomain of the G1 domain exhibit low proliferation rates and acquire senescence. It was suspected that chondroitin sulfate on versican core protein would be altered when the A subdomain was disrupted, so fibroblasts were made from homozygous Cspg2Ξ”3/Ξ”3 mouse embryos to investigate the hypothesis. Analysis of the resulting versican deposition demonstrated that the total versican deposited in the Cspg2Ξ”3/Ξ”3 fibroblasts culture was approximately 50% of that of the wild type (WT), while the versican deposited in the ECM of Cspg2Ξ”3/Ξ”3 fibroblasts culture was 35% of that of the WT, demonstrating the lower capacity of mutant (Cspg2Ξ”3/Ξ”3) versican deposited in the ECM. The analysis of CS expression in the Cspg2Ξ”3/Ξ”3 fibroblasts culture compared with wild-type fibroblasts showed that the composition of the non-sulfate chondroitin sulfate isomer on the versican core protein increased in the cell layer but decreased in the culture medium. Interestingly, chondroitin sulfate E isomer was found in the culture medium. The amount of CS in the Cspg2Ξ”3/Ξ”3 cell layer of fibroblasts with mutant versican was dramatically decreased, contrasted to the amount in the culture medium, which increased. It was concluded that the disruption of the A subdomain of the versican molecule leads to lowering of the amount of versican deposited in the ECM and the alteration of the composition and content of CS on the versican molecule

    Apelin Enhances Directed Cardiac Differentiation of Mouse and Human Embryonic Stem Cells

    Get PDF
    Apelin is a peptide ligand for an orphan G-protein coupled receptor (APJ receptor) and serves as a critical gradient for migration of mesodermal cells fated to contribute to the myocardial lineage. The present study was designed to establish a robust cardiac differentiation protocol, specifically, to evaluate the effect of apelin on directed differentiation of mouse and human embryonic stem cells (mESCs and hESCs) into cardiac lineage. Different concentrations of apelin (50, 100, 500 nM) were evaluated to determine its differentiation potential. The optimized dose of apelin was then combined with mesodermal differentiation factors, including BMP-4, activin-A, and bFGF, in a developmentally specific temporal sequence to examine the synergistic effects on cardiac differentiation. Cellular, molecular, and physiologic characteristics of the apelin-induced contractile embryoid bodies (EBs) were analyzed. It was found that 100 nM apelin resulted in highest percentage of contractile EB for mESCs while 500 nM had the highest effects on hESCs. Functionally, the contractile frequency of mESCs-derived EBs (mEBs) responded appropriately to increasing concentration of isoprenaline and diltiazem. Positive phenotype of cardiac specific markers was confirmed in the apelin-treated groups. The protocol, consisting of apelin and mesodermal differentiation factors, induced contractility in significantly higher percentage of hESC-derived EBs (hEBs), up-regulated cardiac-specific genes and cell surface markers, and increased the contractile force. In conclusion, we have demonstrated that the treatment of apelin enhanced cardiac differentiation of mouse and human ESCs and exhibited synergistic effects with mesodermal differentiation factors

    Expression and Function of Ccbe1 in the Chick Early Cardiogenic Regions Are Required for Correct Heart Development

    Get PDF
    During the course of a differential screen to identify transcripts specific for chick heart/hemangioblast precursor cells, we have identified Ccbe1 (Collagen and calcium-binding EGF-like domain 1). While the importance of Ccbe1 for the development of the lymphatic system is now well demonstrated, its role in cardiac formation remained unknown. Here we show by whole-mount in situ hybridization analysis that cCcbe1 mRNA is initially detected in early cardiac progenitors of the two bilateral cardiogenic fields (HH4), and at later stages on the second heart field (HH9-18). Furthermore, cCcbe1 is expressed in multipotent and highly proliferative cardiac progenitors. We characterized the role of cCcbe1 during early cardiogenesis by performing functional studies. Upon morpholino-induced cCcbe1 knockdown, the chick embryos displayed heart malformations, which include aberrant fusion of the heart fields, leading to incomplete terminal differentiation of the cardiomyocytes. cCcbe1 overexpression also resulted in severe heart defects, including cardia bifida. Altogether, our data demonstrate that although cardiac progenitors cells are specified in cCcbe1 morphants, the migration and proliferation of cardiac precursors cells are impaired, suggesting that cCcbe1 is a key gene during early heart development.FCT [SFRH/BD/65628/2009, SFRH/BPD/86497/2012, SFRH/BPD/41081/2007]; F.C.T.B.I. fellowship [PTDC/SAU-BID/114902/ 2009]; FCT; Institute for Biotechnology Bioengineering (Centro Biomedicina Molecular e Celular (IBB/CBME), Laboratorio Associado (LA) in the frame of Project [PestOE/EQB/LA0023/2013]info:eu-repo/semantics/publishedVersio

    Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo

    Get PDF
    In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study

    The Secreted Metalloprotease ADAMTS20 Is Required for Melanoblast Survival

    Get PDF
    ADAMTS20 (A disintegrin-like and metalloprotease domain with thrombospondin type-1 motifs) is a member of a family of secreted metalloproteases that can process a variety of extracellular matrix (ECM) components and secreted molecules. Adamts20 mutations in belted (bt) mice cause white spotting of the dorsal and ventral torso, indicative of defective neural crest (NC)-derived melanoblast development. The expression pattern of Adamts20 in dermal mesenchymal cells adjacent to migrating melanoblasts led us to initially propose that Adamts20 regulated melanoblast migration. However, using a Dct-LacZ transgene to track melanoblast development, we determined that melanoblasts were distributed normally in whole mount E12.5 bt/bt embryos, but were specifically reduced in the trunk of E13.5 bt/bt embryos due to a seven-fold higher rate of apoptosis. The melanoblast defect was exacerbated in newborn skin and embryos from bt/bt animals that were also haploinsufficient for Adamts9, a close homolog of Adamts20, indicating that these metalloproteases functionally overlap in melanoblast development. We identified two potential mechanisms by which Adamts20 may regulate melanoblast survival. First, skin explant cultures demonstrated that Adamts20 was required for melanoblasts to respond to soluble Kit ligand (sKitl). In support of this requirement, bt/bt;Kittm1Alf/+ and bt/bt;KitlSl/+ mice exhibited synergistically increased spotting. Second, ADAMTS20 cleaved the aggregating proteoglycan versican in vitro and was necessary for versican processing in vivo, raising the possibility that versican can participate in melanoblast development. These findings reveal previously unrecognized roles for Adamts proteases in cell survival and in mediating Kit signaling during melanoblast colonization of the skin. Our results have implications not only for understanding mechanisms of NC-derived melanoblast development but also provide insights on novel biological functions of secreted metalloproteases

    Lactate Produced by Glycogenolysis in Astrocytes Regulates Memory Processing

    Get PDF
    When administered either systemically or centrally, glucose is a potent enhancer of memory processes. Measures of glucose levels in extracellular fluid in the rat hippocampus during memory tests reveal that these levels are dynamic, decreasing in response to memory tasks and loads; exogenous glucose blocks these decreases and enhances memory. The present experiments test the hypothesis that glucose enhancement of memory is mediated by glycogen storage and then metabolism to lactate in astrocytes, which provide lactate to neurons as an energy substrate. Sensitive bioprobes were used to measure brain glucose and lactate levels in 1-sec samples. Extracellular glucose decreased and lactate increased while rats performed a spatial working memory task. Intrahippocampal infusions of lactate enhanced memory in this task. In addition, pharmacological inhibition of astrocytic glycogenolysis impaired memory and this impairment was reversed by administration of lactate or glucose, both of which can provide lactate to neurons in the absence of glycogenolysis. Pharmacological block of the monocarboxylate transporter responsible for lactate uptake into neurons also impaired memory and this impairment was not reversed by either glucose or lactate. These findings support the view that astrocytes regulate memory formation by controlling the provision of lactate to support neuronal functions

    GATA factors lie upstream of Nkx 2.5 in the transcriptional regulatory cascade that effects cardiogenesis.

    No full text
    Members of the GATA-4, -5, and -6 subfamily of transcription factors are co-expressed with the homeoprotein Nkx 2.5 in the precardiac mesoderm during the earliest stages of its specification and are known to be important determinants of cardiac gene expression. Ample evidence suggests that GATA factors and Nkx 2.5 cross-regulate each other's expression; however, the temporal order of the expression of these transcription factors in vivo remains unresolved, and thus precise definition of the role of the products of the genes they transcribe in early development has been difficult to assess. We employed P19 CL6 mouse embryonic carcinoma cells as a model to investigate this problem, because these cells, like embryonic stem cells, can be induced to differentiate along multiple lineages. Here we demonstrate that when P19 CL6 cells are induced to differentiate to a cardiogenic lineage, the expression of GATA-4 and GATA-6 is up-regulated prior to the transcriptional activation of Nkx 2.5. Moreover, over-expression of GATA-4 or -6 at the time of Nkx 2.5 induction results in a significant up-regulation of endogenous Nkx 2.5 transcription. Finally, it is known that a Nkx-dependent enhancer is necessary for GATA-6 expression within cardiomyocytes of the developing mouse embryo. We demonstrate that within undifferentiated P19 CL6 cells, GATA-6 expression is subject to active repression by a novel upstream element that possesses binding sites for factors involved in transcriptional repression that are conserved between mammalian species
    • …
    corecore