897 research outputs found

    Development of new additive for grain refinement of austenitic stainless steel

    Get PDF
    The synthetic vanadinites (Pb(x)Ca(10-x))(VO4)6F2delta, 1 < x < 9, adopt a P6(3)/m apatite structure with 9.7590 (1) < or = a < or = 10.1179 (1) A and 7.0434 (3) < or = c < or = 7.4021 (1) A. The partitioning of calcium and lead over the AI(4f) and AII(6h) positions is nonstoichiometric with lead preferentially entering the larger AII site. High-resolution electron microscopy showed that samples annealed for 10 h at 1073 K are in disequilibrium with calcium- and lead-rich microdomains co-existing at unit-cell scales. For (Pb5Ca5)(VO4)6F2delta, sintering in excess of 2 weeks is required for the metals to order macroscopically. As annealing progresses, c/a, the partitioning coefficient kPb(AI/AII) and the AIO6 metaprism twist angle (phi) adjust cooperatively to enlarge the apatite channel, and thereby accommodate higher lead content. These results demonstrate that phi is a sensitive measure of disequilibrium and a useful device for monitoring changes in apatite topology as a function of composition

    An Electron-Tracking Compton Telescope for a Survey of the Deep Universe by MeV gamma-rays

    Get PDF
    Photon imaging for MeV gammas has serious difficulties due to huge backgrounds and unclearness in images, which are originated from incompleteness in determining the physical parameters of Compton scattering in detection, e.g., lack of the directional information of the recoil electrons. The recent major mission/instrument in the MeV band, Compton Gamma Ray Observatory/COMPTEL, which was Compton Camera (CC), detected mere 30\sim30 persistent sources. It is in stark contrast with \sim2000 sources in the GeV band. Here we report the performance of an Electron-Tracking Compton Camera (ETCC), and prove that it has a good potential to break through this stagnation in MeV gamma-ray astronomy. The ETCC provides all the parameters of Compton-scattering by measuring 3-D recoil electron tracks; then the Scatter Plane Deviation (SPD) lost in CCs is recovered. The energy loss rate (dE/dx), which CCs cannot measure, is also obtained, and is found to be indeed helpful to reduce the background under conditions similar to space. Accordingly the significance in gamma detection is improved severalfold. On the other hand, SPD is essential to determine the point-spread function (PSF) quantitatively. The SPD resolution is improved close to the theoretical limit for multiple scattering of recoil electrons. With such a well-determined PSF, we demonstrate for the first time that it is possible to provide reliable sensitivity in Compton imaging without utilizing an optimization algorithm. As such, this study highlights the fundamental weak-points of CCs. In contrast we demonstrate the possibility of ETCC reaching the sensitivity below 1×10121\times10^{-12} erg cm2^{-2} s1^{-1} at 1 MeV.Comment: 19 pages, 12 figures, Accepted to the Astrophysical Journa

    Arrival directions of cosmic rays of E .4 EeV

    Get PDF
    The anisotropy of cosmic rays observed by the Utah Fly's Eye detector has been studied. Emphasis has been placed on examining distributions of events in galactic coordinates. No statistically significant departure from isotropy has been observed for energies greater than 0.4 EeV (1 EeV = 10 to the 18th power eV). Results of the standard harmonic analysis in right ascension are also presented

    Energy calibration of the fly's eye detector

    Get PDF
    The methods used to calibrate the Fly's eye detector to evaluate the energy of EAS are discussed. The energy of extensive air showers (EAS) as seen by the Fly's Eye detector are obtained from track length integrals of observed shower development curves. The energy of the parent cosmic ray primary is estimated by applying corrections to account for undetected energy in the muon, neutrino and hadronic channels. Absolute values for E depend upon the measurement of shower sizes N sub e(x). The following items are necessary to convert apparent optical brightness into intrinsical optical brightness: (1) an assessment of those factors responsible for light production by the relativistic electrons in an EAS and the transmission of light thru the atmosphere, (2) calibration of the optical detection system, and (3) a knowledge of the trajectory of the shower
    corecore