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ABSTRACT

The anisotropy of cosmic rays observed by the Utah Fly's
Eye detector has been studied. Emphasis has been placed on
examining distributions of events in galactic coordinates.
No statistically significant departure from isotropy has been
observed for energies greater than 0.4 EeV (1EeV = 10IB eV).
Results of the standard harmonic analysis in right ascension
are also presented.

1. Introduction. At the highest energies, the arrival directions
of cosmic rays are expected to begin to reveal their origins. In
this analysis the observed number of events is compared to the number
predicted for an isotropic distribution as a function of both galactic
longitude and sin (galactic latitude) for each energy interval, so
searches can be (Badefor clustering in two dimensions. The event
distributions have also been fit to two different models for galactic
latitude dependence: 1. An excess of events from the general direction

of the galactic plane of the form I(b) = Io[(1 _.f) + f exp(-b2)] whereb is the galactic latitude in radians (1), and A gradient with

respect to galactic latitude of the form I(h) = Io(1 + s'b), where b is
the galactic latitude in degrees. A simil_ analysis of the data is
performed in the two-dimensionalcelestial coordinates, and fits have
been made to the amplitude A and phase _o of the first harmonic of the
form I(_) = Io(1 + A cos(_ - _o)), where _ is the right ascension.

2. Description of Analysis. We report here the arrival directions
of extensive air showers observed by the Utah Fly's Eye detector,
situated at 41°N latitude, between the dates of Nov. 1981 and April
1985. A detailed description of the detector is reported in ref. 2.
Only data recorded on clear nights with no clouds higher than 10° above
the horizon were accepted. The total live time corresponding to these
"weather cuts" is 58.2 days. Further cuts on the data were made to
ensure well-measured tracks with good control over the error in
direction: the average error in zenith angle after cuts is _ = 3.8°.
Events passing all cuts were then binned in both galactic and celestial
coordinates for four energy intervals: 0.4 - 1.0 EeV, 1.0 - 3.0 EeV,
3.0 - 10.0 EeV, and > 10 EeV. All distributionswere made in equal-
area bins of 5° in galactic longitude (or right ascension) versus 0.4
in sin latitude (or sin declination).

Since the Fly's Eye can only operate on clear moonless
nights, the irregular pattern of observation times precludes the
assumption of uniform acceptance in right ascension made by experiments
running continously. The procedure used to calculate the number of
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events expected as a function of galactic longitude and sin(latitude)
from an isotropic distribution is outlined in this section. The distri-
bution in celestial coordinates follows exactly the same prescription.

The absolute start and stop times for each data run have
been recorded. For each 15 minute interval of detector on-time, the
zenith angle for each bin of galactic coordinates is computed. Since
the distribution in azimuth is uniform, the detector acceptance in
zenith angle is the only quantity necessary to compute the acceptance
times live-time product at each time interval and each pair of coordi-
nates. Two different techniques have been used to find the acceptance
as a function of zenith angle. The first is to use the Monte Carlo
simulation of the detector. In principle, this allows an absolute rate
determination in galactic coordinates, although only the relative rate
was used for this analysis. The second technique uses the measured
zenith angle distribution of the data itself to get the relative
acceptance. An acceptance of I gives a flat distribution in cos(oz),
so measuring the deviation from a fixed number gives the ez dependence.
The relative acceptance in zenith angle calculated directly from the
data agrees very Well with that predicted by the Monte Carlo simulation:
the results reported here were shown to be insensitive to the distri-
bution used.

The acceptance-weighted live times thus generated give the
relative rates expected in each bin of galactic coordinates. The
absolute normalization is then fixed by demanding that the total number
of events predicted be equal to the total number of events observed in
each energy interval. Deviations in the data from isotropy should then
appear as local excesses (or deficits) of events compared with the
number predicted.

Given the number of events observed and predicted in each bin,
fits to various models for a possible anisotropy can be made. The number

. of events expected is weighted by the appropriate model-dependent factor
(for example, (I + s.b) to fit for a galactic latitude gradient s), the
"expected" array is renormalized to preserve the same total number of
events, and the joint probability for the observed to predicted distri-

- bution is calculated. Maximizing the probability with respect to
variation in the parameters of the model (for example, s) gives the best
fit to the data as well as the associated errors on the best-fit values
of the parameters.

"_ 3. Results and Discussion. Figure I

shows our acceptance in galactic
coordinates from Monte Carlo events

between 3-10 EeV. Note that the
. ,_ - region between galactic longitude

240 ° to 0 ° and galactic latitude +30
to -90 ° are not visibie to the Fly's
Eye. Observed rates projected onto

- a single axis must, of course,
be evaluated with this fact in mind.

Fig. I. The Fly's Eye Acceptance.
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The ratio of events observed to events expected as a
function of galactic latitude are shown in Fig. 2. Table 1 gives the
results for the two galactic models considered. Column a) shows fits
to a latitude gradient s of the form (1 + s.b); column b) shows the

2
fits to a galactic plane excess (1 - f + fe-b ) with b in radians. No
statistically significant deviations from isotropy are observed,
although the trend in the latitude gradient agrees with that observed
by other experiments (3). The data disagrees mildly with the analysis
presented in ref. (1) for the galactic plane excess model, at about
1 _ level. However, our inability to see a rather large region of the
galactic disk, in particular the galactic center, should be kept in
mind when interpreting these results.
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Fig. 2. Observed rates as a function of galactic latitude.
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Table I. Galactic latitude fits

a) b)
Energy <E> Number of Slope Galactic P1ane
(EeV) (Eev) Events s(lO-3/deg) Excess f

0.4-1.0 .64 760 -0.1±1.6 0.06±0.20
1.0-3.0 1.7 575 -1.5±1.7 0.15±0.21

0.3
3.0-10,0 5.0 170 -1.5 ± 3.0 0.0 t_._

>10.0 18.8 45 0.6±6.0 0_1,o

In celestial coordinates, the fits were made to the amplitude
and phase of the first harmonic in right ascension, and are shown in
Table 2. Here, there is some evidence for non-zero anisotropy, again
in agreement with other experiments.

Table 2. First harmonic in right ascension

Energy Amplitude Phase _o
(EeV) A (degrees)

0.4-1.0 .15 ± .08 300 ± 30
1.0-3.0 .07 ± .08 25 ± 80
3.0-10.0 .25 ± .16 350 ± 40

>10.0 .34 ± .34 290 ± 60

4. Conclusions. If we believe that the cosmic rays above 1EeV
. are predominantly protons from our own galaxy, then it is perhaps sur-

prising that there is no evidence in our data for an enhancement from
the general direction of the galactic disk. Certainly, more evidence
on the composition of cosmic rays at this energy will be crucial to a
real understanding of production sources and mechanisms. If a sig-
nificant fraction of the observed cosmic rays are in fact galactic
iron, or are "universal" extra-galactic protons, then the observed
smoothness of the data would be reasonable.
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