
Congruences for Hecke Eigenvalues of
Siegel Modular Forms

By H. Katsurada and S. Mizumoto

1 Introduction

For r ∈ Z>0 and k ∈ 2Z>0 with k > r let f be a holomorphic Siegel cusp form
of weight k for Sp2r(Z). Suppose that f is a Hecke eigenform, i.e. a nonzero
common eigenfunction of the Hecke algebra. Let Q(f) be the number field
generated over Q by the eigenvalues of the Hecke operators over Q on f .
Let L(s, f, St) be the standard L-function attached to f . Suppose that the
Fourier coefficients of f belong to Q(f). Then the value

L∗(k − r, f, St) :=
L(k − r, f, St)

π(2r+1)k− 3r(r+1)
2 (f, f)

belongs to Q(f), where (f, f) is the square of the Petersson norm [10][44]
[6][32].

Let n ∈ Z>0 with n > r and assume k ≥ 3
2
(n + 1). Let [f ]nr be the

Klingen-Eisenstein series of degree n attached to f . Then [f ]nr is also a
Hecke eigenform and its Fourier coefficients belong to Q(f) by [26][35]. Let

[f ]nr (Z) =
∑
N≥0

a(N, [f ]nr )e(σ(NZ))

be the Fourier expansion of [f ]nr . Here e(x) := e2πix for x ∈ C, N runs over
all symmetric positive semidefinite semi-integral matrices of size n, and σ is
the trace for matrices.
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The main result of this paper (Theorem 3.1 below) tells that there exists
a finite set S of prime ideals of Q(f), which is explicitly described in Sect. 3
below, with the following property: Suppose a prime ideal p of Q(f) satisfies
p /∈ S and

ordp

 [n+r
2

]∏
j=[n+1

2
]

ζ(1 + 2j − 2k) · L∗(k − r, f, St)a(N0, [f ]nr )2

 =: −α < 0

for some N0 > 0, where [a] for a ∈ Q is the largest integer ≤ a and ordp is
the p-order. Then there exists a Hecke eigenform F of weight k for Sp2n(Z)
such that

NQ(F,f)/Q(f) (λ(T, F ) − λ(T, [f ]nr )) ≡ 0 (mod pα) for all T ∈ Hn
Z.

Here Hn
Z is the Hecke algebra over Z, λ(T, F ) and λ(T, [f ]nr ) are the eigen-

values of T on F and on [f ]nr respectively, Q(F, f) := Q(F )Q(f) is the
composite field, and NQ(F,f)/Q(f) is the norm map for Q(F, f)/Q(f).

Such congruences were first discovered by Kurokawa [23] as numerical
examples in case n = 2, r = 1, and k ≤ 20; he also posed a general conjecture
predicting the existence of similar types of congruences modulo special values
of L-functions. After that we proved the above assertion for n = 2 in [31]
under a “multiplicity one condition” which was quite restrictive.

Meanwhile some related topics have been discussed by several authors
[7][46].

Now in this paper we prove the congruences for general degree, and more-
over, without assuming the multiplicity one condition. Thus our result settles
Kurokawa’s conjecture (under some additional conditions defining the set
S of exceptional prime ideals).

Our result may also be considered as a kind of results which characterize
the prime ideals giving congruences between lifted and nonlifted modular
forms as special values of automorphic L-functions; this theme has been
pursued by [17][18].

The fundamental difference between the method of this paper and that
of [31] lies in the following two points:
(1) In [31], Lemma 4, we used a modular form of the form

φa
4φ

b
6 (1.1)
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where φl is the degree two Siegel-Eisenstein series of weight l and a and b are
some non-negative integers satisfying 4a+6b = k. This modular form worked
as a kind of “bridge” between [f ]21 and the space of cusp forms of degree two.
Instead of (1.1) we take in this paper the pullback of Siegel-Eisenstein series
of degree 2n and use the formula of Garrett [9] and Böcherer [5]. This
enables us to generalize the argument in [31] to the case of degree n.
(2) We use the integrality lemma in its general form as in [37] which is valid
for general n and does not require the multiplicity one condition. In [31] the
lemma was proved only for n ≤ 2 under this last condition.

The paper is organized as follows. Sect. 2 is preparatory; we summarize
what we need later to state our result precisely. In Sect. 3 we state our
main theorem and in Sect. 4 we give the proof. In Sect. 5 we give some
numerical examples in case of degree three; the method of computation is
the one developed in [18].

2 Preliminaries

2.1 Notation

For a subring R of C the group of units in R is denoted by R×. For a prime
ideal l of R, Rl is the localization of R at l. If A is an m×n matrix with
m,n ∈ Z>0, we write it also as A(m,n) and as A(m) if m = n. For two matrices
A and B we write A[B] := tBAB if the right-hand side is defined. The set
of all m×n matrices with entries in R is denoted by R(m,n) and by R(m) if
m = n. For a number field K the ring of integers in K is denoted by OK .

2.2 Siegel modular forms

For n, k ∈ Z>0 the C-vector space of holomorphic modular (resp. cusp) forms
of weight k for Γn := Sp2n(Z) is denoted by Mn

k (resp. Sn
k ).

Let Hn be the Siegel upper half space of degree n. For φ and ψ ∈ Mn
k

such that φψ is a cusp form, the Petersson inner product is defined by

(φ, ψ) :=

∫
Γn\Hn

φ(Z)ψ(Z)det(Y )k−n−1dXdY.

Here Z = X + iY with real matrices X = (xjl) and Y = (yjl) ; dX :=
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∏
j≤l dxjl , dY :=

∏
j≤l dyjl ; the integral is taken over a fundamental domain

of Γn\Hn .
Let An (resp. A+

n ) be the set of all symmetric positive semidefinite (resp.
positive definite) semi-integral matrices of size n. Every φ ∈ Mn

k has a
Fourier expansion of the form

φ(Z) =
∑

N∈An

a(N,φ)e(σ(NZ)).

For a subring R of C we denote by Mn
k (R) the R-module consisting of all

φ ∈Mn
k such that a(N,φ) ∈ R for all N ∈ An. We also put

W (R) := W ∩Mn
k (R)

for a subspace W of Mn
k . Since

Mn
k = Mn

k (Q)⊗QC

by Shimura [40], the group Aut(C) of automorphisms of C acts on this
space via

φτ (Z) :=
∑

N∈An

a(N,φ)τe(σ(NZ)) for τ ∈ Aut(C).

2.3 The Hecke algebra

For a subfield L of R let

GSp+
2n(L) :=

{
g ∈ L(2n)

∣∣ Jn[g] = ν(g)Jn with ν(g) > 0
}

be the group of symplectic similitudes over L where Jn :=

(
0 −1n

1n 0

)
with

1n being the identity matrix of size n. The action of an element

g =

(
A(n) B(n)

C(n) D(n)

)
∈ GSp+

2n(R) (2.1)

on Hn is given by
g⟨Z⟩ := (AZ +B)(CZ +D)−1.

Let
φ : Hn −→ C
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be an arbitrary function. For a given k ∈ Z, an element (2.1) with

Jn[g] = ν(g)Jn

acts on F via

(φ|k g)(Z) := ν(g)nk−n(n+1)
2 det(CZ +D)−kφ(g⟨Z⟩).

For a subring R of C let Hn
R be the Hecke algebra over R associated to the

Hecke pair
(Γn, GSp

+
2n(Q) ∩ Z(2n))

in the sense of Andrianov [1]. (The definition of Hn
R in Mizumoto [37],

p. 115 is false; it should be corrected as above.) By definition

Hn
R = Hn

Z⊗ZR.

For g ∈ GSp+
2n(Q) the double coset ΓngΓn splits into a disjoint union of

left cosets:

ΓngΓn =
m⊔

j=1

Γngj.

For φ ∈Mn
k we put

φ|ΓngΓn :=
m∑

j=1

φ|k gj.

Extending the action by C-linearity, we have a representation of Hn
C on Mn

k .
We call φ ∈Mn

k a Hecke eigenform if it is a nonzero common eigenfunction
of Hn

C. If φ ∈ Mn
k is a Hecke eigenform, we write the eigenvalue of T ∈ Hn

C

on φ as λ(T, φ). For a Hecke eigenform φ ∈Mn
k we put

Q(φ) := Q(λ(T, φ) |T ∈ Hn
Q).

The field Q(φ) is a totally real finite extension of Q and there exists a basis
{φ1, . . . , φd} of Sn

k such that each φj is a Hecke eigenform whose Fourier
coefficients lie in Q(φj) by Kurokawa [25]. Moreover if k ≥ 3

2
(n + 1), the

above basis can be taken so that the elements φj are mutually orthogonal
and permuted under Aut(C) by [32], Appendix A.
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2.4 L-functions and Eisenstein series

For a Hecke eigenform φ ∈ Sn
k let

L(s, φ, St) :=
∏

p prime

{
(1 − p−s)

n∏
j=1

(1 − αj(p)p
−s)(1 − αj(p)

−1p−s)

}−1

(2.2)

be the standard L-function attached to φ. Here (α1(p), · · · , αn(p)) ∈ (C×)n

is one set of the Satake p-parameters of φ for a prime number p and s is a
complex variable. By Shimura [41] the right-hand side of (2.2) converges
absolutely and uniformly for Re(s) ≥ n

2
+1+δ for any δ > 0. The L-function

L(s, φ, St) has meromorphic continuation to the whole s-plane [2][5].
Let n ∈ Z>0 and r ∈ Z such that 0 ≤ r ≤ n. We put

M0
k = S0

k = C (constant functions).

Let ∆n,r be the subgroup of Γn defined by

∆n,r :=

{(
∗ ∗

0(n−r,n+r) ∗

)
∈ Γn

}
.

For f ∈ Sr
k with k ∈ 2Z>0 the nonholomorphic Eisenstein series for Γn

attached to f in the sense of Langlands [28] and Klingen [20] is defined
by

[f ]nr (Z, s) :=
∑

M∈∆n,r\Γn

(
det(Im(M⟨Z⟩))
det(Im(M⟨Z⟩∗))

)s

f(M⟨Z⟩∗)det(CZ +D)−k.

(2.3)

Here s ∈ C , Z is a variable on Hn, M =

(
A B
C D

)
with A,B,C,D being

n × n blocks runs over a complete set of representatives of ∆n,r\Γn, and
M⟨Z⟩∗ is the upper left r × r block of M⟨Z⟩. By [20] the right-hand side of
(2.3) converges absolutely and uniformly on{

(Z, s) ∈ Hn × C
∣∣∣ σ(X2) ≤ δ−1, Y ≥ δ1n, Re(s) ≥ n+ r + 1 − k

2
+ δ

}
for any δ > 0. If r = 0, we write

E
(n)
k (Z, s) := [1]n0 (Z, s)

= det(Y )s
∑

M∈∆n,0\Γn

det(CZ +D)−k|det(CZ +D)|−2s
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for Re(s) > (n + 1 − k)/2. As a function in s, (2.3) has meromorphic
continuation to the whole s-plane [5][28][33]. Hereafter we assume

k ≥ 3

2
(n+ 1). (2.4)

Then by Weissauer [47] and Haruki [11], E
(m)
k (Z, s) for every 1 ≤ m ≤ 2n

is holomorphic in s at s = 0 and

E
(m)
k (Z) := E

(m)
k (Z, 0)

belongs to Mm
k (Q).

Let f ∈ Sr
k be a Hecke eigenform with 1 ≤ r ≤ n. By Garrett [9] and

Böcherer [5] (
f, E

(n+r)
k

(
−Z̄(n) 0

0 ∗

))
= c(f)[f ]nr (Z) (2.5)

with
[f ]nr (Z) := [f ]nr (Z, 0) ∈Mn

k

and

c(f) :=(−1)
rk
2 2

r(r+3)
2

+1−krπ
r(r+1)

2 ·
Γr(k − r+1

2
)

Γr(k)

· L(k − r, f, St)

ζ(k)
∏r

j=1 ζ(2k − 2j)
;

here

Γr(s) := π
r(r−1)

4

r∏
j=1

Γ(s− j − 1

2
).

By (2.4) we have c(f) ̸= 0. We put

c∗(f) :=
c(f)

(f, f)
. (2.6)

If the Fourier coefficients of f belong to Q(f), then c∗(f) and the Fourier
coefficients of [f ]nr belong to Q(f) by [32], Appendix A.
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2.5 The ideal A(φ)

We assume (2.4). Let φ ∈ Sn
k be a Hecke eigenform with Fourier coefficients

in Q(φ). Put

V :=
⊕

τ

Cφτ ,

where τ runs over all embeddings of Q(φ) into C. By [34], p. 221,

V (Q)⊗QC = V

and
V ⊥(Q)⊗QC = V ⊥,

where V ⊥ is the orthogonal complement of V in Sn
k . Hence V (Z) ⊕ V ⊥(Z)

is a sublattice of maximal rank in Sn
k (Z). Let ν(φ) be the exponent of (i.e.

the minimal positive integer that annihilates) the finite abelian group

Sn
k (Z)/(V (Z) ⊕ V ⊥(Z)).

By [34], λ(T, φ) ∈ OQ(φ) for all T ∈ Hn
Z since k > n. We define κ(φ) ∈

Z>0 to be the exponent of the finite abelian group

OQ(φ)/Z[λ(T, φ)|T ∈ Hn
Z].

Let D(Q(φ)) be the different of Q(φ)/Q. We put

A(φ) := κ(φ)ν(φ)D(Q(φ))

which is an integral ideal of Q(φ).
If φ ∈ Sn

k (Q) and Hn
Q acts irreducibly on Sn

k (Q), then A(φ) = (1).

3 Statement of Results

To state our main theorem (Theorem 3.1 below), we assume the following
conditions (i)–(vii):

(i) n ∈ Z>0, k even, k ≥ 3
2
(n+ 1), 1 ≤ r ≤ n− 1.

(ii) The cusp form f ∈ Sr
k is a Hecke eigenform whose Fourier coefficients

belong to Q(f).
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(iii) There exists a prime ideal p of Q(f) such that

ordp

 [n+r
2

]∏
j=[ n+1

2
]

ζ(1 + 2j − 2k) · L∗(k − r, f, St)a(N0, [f ]nr )2

 =: −α < 0

(3.1)
for some N0 ∈ A+

n . Observe that the left hand side of (3.1) remains
unchanged if we replace f by γf with any γ ∈ Q(f)×.

(iv) Let p be the prime number lying under p. Then p ≥ 2k+ 1 and p does
not divide

[n−1
2

]∏
i=1

ζ(1 + 2i− 2k) ·
n∏

j=[n+r
2

]+1

ζ(1 + 2j − 2k) ∈ Z(p).

For every integer 1 ≤ ν ≤ n such that Sν
k ̸= {0}, there exists a basis

{f (ν)
1 , . . . , f

(ν)
dν

} of Sν
k satisfying the following (a)–(e) by [32], Appendix A:

(a) The Fourier coefficients of f
(ν)
j belong to Q(f

(ν)
j ).

(b) If i ̸= j, then (f
(ν)
i , f

(ν)
j ) = 0.

(c) The cusp forms f
(ν)
1 , . . . , f

(ν)
dν

are permuted under the action of Aut(C).

(d) Each f
(ν)
j has one Fourier coefficient that is equal to 1.

(e) The f
(r)
1 is a constant multiple of f .

On these bases we assume:

(v) If 1 ≤ ν ≤ n− 1, 1 ≤ j ≤ dν , and (ν, j) ̸= (r, 1), then

ordq

 [n+ν
2

]∏
j=ν+1

ζ(1 + 2j − 2k) · L∗(k − ν, f
(ν)
j , St)

 = 0

for every prime ideal q of Q(f, f
(ν)
j ) lying above p; we understand that

an empty product is equal to 1.

(vi) The ideals A(f
(ν)
j ) (1 ≤ ν ≤ n− 1, 1 ≤ j ≤ dν) are coprime with p.



Congruences for Siegel Modular Forms 10

For 1 ≤ ν ≤ n−1 we define µk(ν) ∈ Z>0 as in [34], p. 225: for 0 ≤ m ≤ ν−1
let ek(ν,m) be the exponent of the finite abelian group [Sm

k (Z)]νm/[S
m
k ]νm(Z);

we understand that ek(ν,m) = 1 if Sm
k = {0}.

Then we put

µk(ν) :=
ν−1∏
m=0

ek(ν,m).

On this we assume:

(vii) p does not divide µk(ν) (1 ≤ ν ≤ n− 1) .

Now we state our main result:

Theorem 3.1. Under the above assumptions (i)–(vii), there exists a Hecke
eigenform F ∈ Sn

k such that

NQ(F,f)/Q(f)(λ(T, F ) − λ(T, [f ]nr )) ≡ 0 (mod p) for all T ∈ Hn
Z.

If moreover p is coprime with every A(f
(n)
j ) (1 ≤ j ≤ dn), then there exists a

Hecke eigenform G ∈ Sn
k such that

NQ(G,f)/Q(f)(λ(T,G) − λ(T, [f ]nr )) ≡ 0 (mod pα) for all T ∈ Hn
Z.

Remark 3.2. (1) We do not assume the multiplicity one condition which
we assumed in [31]. We needed that condition in [31] in order to use the
integrality lemma for n = 2 (Lemma 3 there) since we did not know the
detailed structure of Sn

k as a module over Hn
C which we found later in [34],

pp. 211–222.
(2) We call an N ∈ A+

n a kernel form if every nonsingular G ∈ Z(n) such that
N [G−1] ∈ A+

n satisfies det(G) = ±1. For every kernel form N ∈ A+
n we have

a(N, [f ]nr ) =Cn
r,kζ(k)

r∏
j=1

ζ(2k − 2j)

· a(N,E(n)
k ) ·

D̃(k − r+1
2
, f, ϑ

(r)
N )

L(k − r, f, St)

under the assumption of Theorem 3.1 ([3]; see also [36, p. 202]). Here

Cn
r,k := (−1)

rk
2 2

r(r−1)
2

−rkπ−rk+ r2

2
− rn

2
Γn(k)

Γn−r(k − r
2
)
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and
ϑ

(r)
N (Z) :=

∑
G∈Z(n,r)

e (σ(N [G]Z))

is the theta function of degree r associated with N which is a modular form
of weight n/2 for some congruence subgroup of Γr. The function D̃(s, f, ϑ

(r)
N )

is defined for sufficiently large Re(s) by

D̃(s, f, ϑ
(r)
N ) :=

∑
T∈A+

r /GLr(Z)

a(T, f)a(T, ϑ
(r)
N )

|Aut(T )|
det(T )−s

and after that by analytic continuation [36]. Here U ∈ GLr(Z) acts on
T ∈ A+

r via T 7→ T [U ] and |Aut(T )| stands for the order of the group

Aut(T ) := {U ∈ GLr(Z) |T [U ] = T}.

By [36],

D̃(k − r+1
2
, f, ϑ

(r)
N )

πrk− 3
4
r2− r

4
− 1

2
[ r
2
](f, f)

∈ Q(f).

The explicit formula of a(N,E
(n)
k ) for all N ∈ An is given in [15].

4 Proofs

Let n ∈ Z and k ∈ 2Z such that k ≥ 3
2
(n+ 1). Put

Z(n, k) := ζ(1 − k)

[n
2
]∏

j=1

ζ(1 + 2j − 2k) (4.1)

and
Ẽ

(n)
k (Z) := Z(n, k)E

(n)
k (Z). (4.2)

By the Siegel-Böcherer theorem ([42], [4]; cf. [34], p. 223 for low weights) we
have

Lemma 4.1. Under the assumptions (i) and (iv) in Sect. 3, the Fourier

coefficients of Ẽ
(m)
k are p-integral for 1 ≤ m ≤ 2n.



Congruences for Siegel Modular Forms 12

Remark 4.2. For every Hecke eigenform φ ∈ Sν
k for 1 ≤ ν ≤ n let c∗(φ) be

as in (2.6). Then there exists a u ∈ Z×
(p) such that

c∗(φ) = u · L
∗(k − ν, φ, St)

Z(2ν, k)

for every prime number p ≥ 2k + 1.

Remark 4.3. If 1 ≤ m1 ≤ m2 ≤ 2k − 2, then

Z(m2, k)/Z(m1, k) ∈ Z(p) for p ≥ 2k + 1

by von-Staudt’s theorem.

Define g
(ν)
N ∈M ν

k (Q) for N ∈ An and 1 ≤ ν ≤ n by

Ẽ
(n+ν)
k

(
Z(n) 0
0 W (ν)

)
=

∑
N∈An

g
(ν)
N (W )e(σ(NZ)). (4.3)

For ν = n we have

g
(n)
N (W ) = Z(2n, k)

n∑
ν=0

dν∑
j=1

c∗(f
(ν)
j )a(N, [f

(ν)
j ]nν )[f

(ν)
j ]nν (W ) (4.4)

by (2.5). Here we put d0 := 1, f
(0)
1 := 1, and c∗(1) := 1. Observe that each

term for ν ≥ 1 in the right-hand side of (4.4) is invariant if we multiply f
(ν)
j

by an element of Q(f
(ν)
j )×. In particular, (4.4) is still valid if we replace f

(r)
1

by f .

Lemma 4.4. For 1 ≤ ν ≤ n let φ ∈ Sν
k be a Hecke eigenform. Suppose that

the Fourier coefficients of φ belong to Q(φ) and that one of them is equal to
1. Then, under the assumptions (i) and (iv), for every N ∈ An we have

c∗(φ)a(N, [φ]nν ) ∈ µk(ν)
−1Z(n+ ν, k)−1A(φ)−1 · Z×

(p). (4.5)

Proof. This follows directly from [34], Theorem 6.5. By Remark 4.3 the
assumption N ∈ A+

n is not necessary.

Hereafter in this section we assume that the conditions (i)–(vii) in Sect.
3 are satisfied.
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Lemma 4.5. For 1 ≤ ν ≤ n− 1 and (ν, j) ̸= (r, 1), the Fourier coefficients
of

Z(2n, k)c∗(f
(ν)
j )a(N0, [f

(ν)
j ]nν )[f

(ν)
j ]nν (W )

are p-integral, i.e., q-integral for every prime ideal q of Q(f, f
(ν)
j ) lying above

p.

Proof. For any N ∈ An we have

Z(2n, k)c∗(f
(ν)
j )a(N0, [f

(ν)
j ]nν )a(N, [f

(ν)
j ]nν )

=
Z(2n, k)

Z(n+ ν, k)
· v

c∗(f
(ν)
j )Z(n+ ν, k)

with a q-integral element v ∈ Q(f, f
(ν)
j ) by Lemma 4.4. Here c∗(f

(ν)
j )Z(n +

ν, k) is a q-unit by the assumption (v) and Remark 4.2. This, together with
Remark 4.3, gives the assertion.

Putting N = N0 in (4.4), we use Lemmas 4.1 and 4.5 to obtain:

Z(2n, k)c∗(f)a(N0, [f ]nr )[f ]nr (W ) +
dn∑
j=1

γjf
(n)
j (W ) ≡ 0 (mod (OQ(f))p)

(4.6)
with

γj := Z(2n, k)c∗(f
(n)
j )a(N0, f

(n)
j ) ∈ Q(f

(n)
j ).

Here the congruence is understood to be the system of congruences for Fourier
coefficients. By (4.6) and Remark 4.2 we have

Z(2n, k)L∗(k − r, f, St)a(N0, [f ]nr )[f ]nr (W )

+ u1Z(2r, k)
dn∑
j=1

γjf
(n)
j (W ) ≡ 0 (mod (OQ(f))p) (4.7)

with a p-unit u1 ∈ Q(f). In the assumption (vii), µk(1) is equal to the
numerator of 2−1ζ(1 − k). Hence the assumptions (iii),(iv) and (vii) imply
that

ordp
(
Z(2n, k)L∗(k − r, f, St)a(N0, [f ]nr )2

)
= −α. (4.8)
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Lemma 4.6. Let n, l ∈ Z>0 with l > n. Let f1, . . . , fd be Hecke eigenforms
in Mn

l linearly independent over C, and K := Q(f1) · · ·Q(fd) the composite
field. Suppose that the Fourier coefficients of every fj belong to K. Let P

be a prime ideal of K and H an element of Ml((OK)P). Assume that there
exist c1, . . . , cd ∈ K such that ordP(a(N0, f1)c1) < 0 for some N0 ∈ A+

n and

H(z) =
d∑

i=1

cifi(z).

Then there exists i ̸= 1 such that

λ(T, fi) ≡ λ(T, f1) (mod P) for all T ∈ Hn
Z.

Proof. This lemma is a slight generalization of [18], Lemma 5.1 and is proved
similarly. Here we use the fact that Hn

Z preserves Ml((OK)P) if l > n ([37],
Lemma A.6).

Thus (4.7), (4.8) and Lemma 4.6 give the former half of the assertion of
Theorem 3.1.

To prove the latter half of Theorem 3.1, we proceed as follows. Observe
that

dn∑
j=1

γjf
(n)
j (W ) ∈ Sn

k (Q) (4.9)

in (4.6) since γjf
(n)
j (W ) for 1 ≤ j ≤ dn are permuted under the action of

Aut(C). Multiplying each f
(n)
j by an element of Q(f

(n)
j )× if necessary, we

assume that

a(N0, f
(n)
j ) =

{
1 (1 ≤ j ≤ s0)

0 (s0 < j ≤ dn)

without loss of generality. From the assumption (iii) and (4.7) it follows that
s0 ≥ 1.

Lemma 4.7. There exist a number t with 1 ≤ t ≤ s0 and a prime ideal P

of Q(f, f
(n)
t ) lying above p such that

ordP(Z(2r, k)γt) ≤ −α.
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Proof. From (4.9) we have
∑s0

j=1 γj ∈ Q. Thus from (4.7) and (4.8) we obtain

ordp(Z(2r, k)

s0∑
j=1

γj) = −α.

which gives the assertion.

For any T ∈ Hn
Z we apply T − λ(T, [f ]nr ) · id on the both sides of (4.6),

where id is the identity operator. As above, the p-integrality of the Fourier
coefficients are preserved. Hence

H(W ) := Z(2r, k)
dn∑
j=1

γj(λ(T, f
(n)
j )−λ(T, [f ]nr ))f

(n)
j (W ) ≡ 0 (mod (OQ(f))p).

(4.10)

Lemma 4.8 (Integrality Lemma [37]). Let φ ∈ Sn
l be a Hecke eigenform

with n, l ∈ Z>0 such that l ≥ 3
2
(n+ 1) + ε, where ε = 0 or 1 according as l is

even or odd. Suppose that the Fourier coefficients of φ belong to Q(φ) and φ
has a Fourier coefficient which is equal to 1. Let K be an algebraic number
field. Then for any ψ ∈ Sn

l (OK) we have

(ψ, φ)

(φ, φ)
∈ A(φ)−1 · OK·Q(φ).

By [37, p. 116, Lemma A.3] there exists a p-unit u2 ∈ OQ(f) such that

u2H ∈ Sn
k (OQ(f)).

Applying Lemma 4.8 to (4.10) with ψ = u2H, φ = f
(n)
j , and K = Q(f), we

see

u2Z(2r, k)γj(λ(T, f
(n)
j )−λ(T, [f ]nr )) ∈ A(f

(n)
j )−1 ·O

Q(f,f
(n)
j )

for 1 ≤ j ≤ s0.

Here A(f
(n)
j ) is coprime with p by the assumption. Therefore Lemma 4.7

gives
λ(T, F ) ≡ λ(T, [f ]nr ) (mod Pα)

for F = f
(n)
t , hence

NQ(F,f)/Q(f)(λ(T, F ) − λ(T, [f ]nr )) ≡ 0 (mod pα).

This completes the proof of Theorem 3.1.
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Remark 4.9. By a similar argument as above we obtain congruences for Hecke
eigenvalues of E

(n)
k and of some φ ∈ Sn

k modulo every prime factor of the
numerator of ζ(1+n−2k) under some additional conditions if n is even. But
in this case a more precise result is easily obtained by applying the Ikeda lift
[12] to the Ramanujan type congruences in M1

2k−n; cf. Kurokawa [24] for
the case n = 2.

5 Numerical Examples

We compute the standard zeta values and the Fourier coefficients of the
Klingen-Eisenstein series with Mathematica, and give some examples of con-
gruence between the Klingen-Eisenstein series and cusp forms of degree three.
For examples in degree two case, we refer to [31].

Let p be a prime number. Let Qp be the field of p-adic numbers and Zp

the ring of p-adic integers. Two symmetric matrices A and A′ with entries in
Qp are called equivalent over Zp with each other and written A∼ZpA

′ if there
is an element X of GLn(Zp) such that A′ = A[X]. For square matrices X and

Y we write X⊥Y =

(
X O
O Y

)
. We denote by Anp the set of semi-integral

matrices of size n over Zp. To see the Fourier expansion of E
(n)
k (Z), for a

semi-integral matrix T of size n over Zp define the local Siegel series bp(T, s)
as in [15]. We define χp(a) for a ∈ Q×

p as follows:

χp(a) :=


+1 if Qp(

√
a) = Qp,

−1 if Qp(
√
a)/Qp is quadratic unramified,

0 if Qp(
√
a)/Qp is quadratic ramified.

For a semi-integral matrix T of even size n define ξp(T ) by

ξp(T ) := χp((−1)n/2 detT ).

Let T ∈ A+
n with n even. Then we can write (−1)n/22n detT = dT f2T with dT

a fundamental discriminant and fT ∈ Z>0. Furthermore, let χT = (dT∗ ) be the

Kronecker character corresponding to Q(
√

(−1)n/2 detT )/Q. We note that
we have χT (p) = ξp(T ) for any prime p. For a nondegenerate semi-integral
matrix T of size n over Zp define a polynomial γp(T,X) in X by

γp(T,X) :=

{
(1 −X)

∏n/2
i=1(1 − p2iX2)(1 − pn/2ξp(T )X)−1 if n is even,

(1 −X)
∏(n−1)/2

i=1 (1 − p2iX2) if n is odd.



Congruences for Siegel Modular Forms 17

Then it is well known that there exists a unique polynomial Fp(T,X) in X
over Q such that

bp(T, s) = γp(T, p
−s)Fp(T, p

−s)

(e.g. [19]).

Remark 5.1. For an element T ∈ An of rank m ≥ 1, there exists an element
T̃ ∈ A+

m such that T ∼ T̃⊥On−m. We note that bp(T̃ , s) does not depend on

the choice of T̃ . Thus we write this as b
(m)
p (T, s). Furthermore, Fp(T̃ , X) does

not depend on the choice of T̃ . Then we put F
(m)
p (T,X) = Fp(T̃ , X). Then,

det T̃ does not depend on the choice of T. Thus we put det(m) T = det T̃ .
Similarly, we write χ

(m)
T = χT̃ if m is even.

Now for T ∈ An of rank m, we put

c
(n)
k (T ) := 2[(m+1)/2]

∏
p

F (m)
p (T, pk−m−1)

·

{ ∏[n/2]
i=m/2+1 ζ(1 + 2i− 2k)L(1 +m/2 − k, χ

(m)
T ) if m is even,∏[n/2]

i=(m+1)/2 ζ(1 + 2i− 2k) if m is odd.
.

Here we make the convention F
(m)
p (T, pk−m−1) = 1 and L(1+m/2−k, χ(m)

T ) =

ζ(1 − k) if m = 0. We also define c
(n)
k (T ) = 0 if T is not semidefinite. Let

Ẽ
(n)
k (Z) be as in (4.2).

Proposition 5.2. Let k ∈ 2Z>0. Assume that k ≥ 3
4
n+ 3

2
. Then we have

Ẽ
(n)
k (Z) =

∑
T∈An

c
(n)
k (T )e(σ(TZ)).

Let n, r ∈ Z>0 such that n ≥ r. Let f be a Hecke eigenform in M r
k . Then

f is expressed as f = [g]rν with some Hecke eigenform g in Sν
k (0 ≤ ν ≤ r).

We then define c̃∗(f) by c̃∗(f) := c∗(g), and [f ]nr := [g]nν . For T1 ∈ An and
T2 ∈ Ar, put

ϵ
(n,r)
k (T1, T2) :=

∑
R∈Z(n,r)

c
(n+r)
k (

(
T1 R/2

tR/2 T2

)
).

Then for any N ∈ An the g
(r)
k,N defined in (4.3) is expressed as

g
(r)
k,N(W ) =

∑
T∈Ar

ϵ
(n,r)
k (N, T )e(σ(TW )).
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Now, for a prime number p, let T (p) be the element of Hr
Z defined by T (p) =

Γr(1r⊥p1r)Γr. For each i ∈ Z≥0 and N ∈ A+
n , write g

(r)
k,N |T (p)i(W ) as

g
(r)
k,N |T (p)i(W ) =

∑
T∈A+

n

ϵ
(n,r)
k,p (i, N, T )e(σ(TW )).

Let {fj} be a basis of M r
k consisiting of Hecke eigenforms. Furthermore

write
fj|T (p)(z) = λjfj(z).

Proposition 5.3. Under the above notation and the assumption, we have

ϵ
(n,r)
k,p (i, N, T ) = Z(n+ r, k)

d∑
j=1

λi
j c̃

∗(fj)a(N, [fj]
n
r )a(T, fj)

for any N ∈ A+
n , T ∈ A+

r and i ∈ Z≥0, where Z(n, k) is defined as in (4.1).

By using Propositions 5.2 and 5.3, we will compute the standard zeta
values and the Fourier coefficients in question. We have an explicit formula
for Fp(T,X) for any nondegenerate semi-integral matrix T over Zp (cf. [15]),
but it is rather complicated in general. Thus we use some trick, which enables
us to compute Fp(T,X) more easily for some special cases. Let m,n ∈ Z>0

such that m ≥ n. For S ∈ Amp ∩ GLm(Q) and T ∈ Anp ∩ GLn(Qp) define
the local density αp(S, T ) and the primitive local density βp(S, T ) by

αp(S, T ) := 2δmn lim
e→∞

p(−mn+n(n+1)/2)e#Ae(S, T )

and
βp(S, T ) := 2δmn lim

e→∞
p(−mn+n(n+1)/2)e#Be(S, T ),

where δmn is Kronecker’s delta,

Ae(S, T ) := {X ∈Mmn(Zp)/p
eMmn(Zp) | S[X] − T ∈ peAnp},

and
Be(S, T ) := {X ∈ Ae(S, T ) | rankZp/pZp(X) = n}.

Let Hk =

k︷ ︸︸ ︷
H⊥...⊥H with H =

(
0 1/2

1/2 0

)
. Now first we remark the

following two lemmas (e.g. [18], Lemmas 2.1 and 3.1).
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Lemma 5.4. Let T be a nondegenerate semi-integral matrix of size n over
Zp. Then for any k ∈ Z with k ≥ n/2 and a half integral matrix S of size 2k
over Zp such that 2S is unimodular, we have

αp(S, T ) = Fp(T, ξp(S)p−k)γp(T, ξp(S)p−k)

and, in particular,

αp(Hk, T ) = Fp(T, p
−k)γp(T, p

−k).

Lemma 5.5. Let n = n1 + n2. Let T11 ∈ An1,p ∩ 1
2
GLn1(Zp) and T22 ∈

An2,p ∩GLn2(Qp). Then for any l ≥ n we have

αp(Hl, T11⊥T22) = βp(Hl, T11)αp(Hl−n1⊥(−T11), T22).

Now the following proposition is due to [18], Proposition 3.2.

Proposition 5.6. Let T11 ∈ An1,p ∩ 1
2
GLn1(Zp) and T22 ∈ An2,p. Let m be

the rank of T22. Then we have

F (n1+m)
p (T11⊥T22, X) = F (m)

p (T22, ξp(T11)p
n1/2X).

Let T = (tij) ∈ A+
3 . Let ẽ1(T ) := GCD1≤i,j≤3(tij), ẽ2(T ) := GCD1≤i,j≤3(2

3−δijTij),
and ẽ3(T ) := 4 detT, where Tij denotes the (i, j)-th cofactor of T. For a prime
number p, let ηp(T ) := (−1)δ2php(T ),m1p(T ) := ordp(ẽ1(T )),m2p(T ) :=
ordp(ẽ2(T )), and m3p(T ) := ordp(ẽ3(T )), where hp(T ) denotes the Hasse
invariant defined on S3(Q), the set of symmetric matrices of size three with
entries in Q. Let p ̸= 2. Then T is GL3(Zp)-equivalent to

pr1u1⊥pr2u2⊥pr3u3

with r1 ≥ r2 ≥ r3 and u1, u2, u3 ∈ Z×
p . We note that r1, r2, r3 are uniqely

determined by T. Then put ξ̃p(T ) := χp(−pr2+r3u2u3) or (χp(−pr2+r3u2u3))
2

according as r1 > r2 or r1 = r2. This ξ̃p(T ) does not depend on the choices
of u1, u2, u2. Next let p = 2. Then T is GL3(Z2)-equivalent to one of the
following forms:

(C1) 2r1u1⊥2r3K

with r1 ≥ r2, K =

(
0 1/2

1/2 0

)
or

(
1 1/2

1/2 1

)
, and u1 ∈ Z×

2 ,

(C2) 2r1K⊥2r3u3
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with r1 ≥ r2 + 2, K =

(
0 1/2

1/2 0

)
or

(
1 1/2

1/2 1

)
, and u3 ∈ Z×

2 ,

(C3) 2r1u1⊥2r2u2⊥2r3u3

with r1 ≥ r2 ≥ r3 and u1, u2, u3 ∈ Z×
2 .

Then define ξ̃2(T ) by

ξ̃2(T ) :=


χ2(− detK) if T is type C1 and r1 ≥ r3 + 1,
χ2(−2r2−r3u2u3) if T is type C3 and r1 ≥ r2 + 3,
χ2(−2r2−r3u2u3)

2 if T is type C3 and r1 = r2 + 2,
1 otherwise.

Furthermore put

n′
p(T ) :=


1 if p ̸= 2 and m2 ≡ 0 mod 2

or if p = 2,m3 − 2m2 +m1 = −4, and m2 ≡ 0 mod 2,
0 otherwise.

Then we have an explicit formula of Fp(T,X) for a nondegenerate semi-
integral matrix T of size not greater than four (cf. [14],[15]).

Proposition 5.7. (1) Let T = (a) ∈ A+
1 . Then we have

Fp(T,X) =

ordp(a)∑
i=0

(pX)i.

(2) Let T =

(
a11 a12/2
a12/2 a22

)
∈ A+

2 . Put e = eT = GCD(a11, a12, a22).

Then we have

Fp(T,X) =

ordp(eT )∑
i=0

(p2X)i

ordp(fT )−i∑
j=0

(p3X2)j

− χT (p)pX

ordp(eT )∑
i=0

(p2X)i

ordp(fT )−i−1∑
j=0

(p3X2)j.
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(3) Let T ∈ A+
3 . Then we have

Fp(T,X) =

m1∑
i=0

(

[(m2−δ2p−1)/2]−i∑
j=0

(p5X2)j)(p3X)i

+ ηp(T )(p2X)m3(p3X2)−[m2/2]+δ2p

m1∑
i=0

(

[m2/2]−δ2p−i∑
j=n′

(p3X2)j)(p2X)i

+ (p5X2)[m2/2](p2X)−m1

m3−2m2+m1∑
i=0

(p2X)iξ̃p(T )i+2

m1∑
j=0

(p2X)i.

Now let p a prime number. For an element T1 ∈ A2,p ∩ 1
2
GL2(Zp) and

T2 ∈ An,p of rank m, put G
(m)
p (T1, T2; k) = F

(m)
p (T2, p

k−mξp(T1)). Here we
make the convention that F (0)(T1, T2, k) = 1 if T2 = O. Then by Proposition
5.6 we have

Proposition 5.8. Let T1 ∈ A+
n with n = 2 or 3, T2 ∈ A+

2 and let T =(
T1 R/2

tR/2 T2

)
∈ An+2 of rank m with R ∈ Z(n,2). Let p0 be a prime number.

(1) Let n = 2. Assume that 2T1 ∈ GL2(Zp) for any prime number p ̸= p0

and 2T2 ∈ GL2(Zp0). Then we have

c
(4)
k (T ) = 4G(m−2)

p0
(T2, T1 −

1

4
T−1

2 [tR], k)

·
∏
p̸=p0

G(m−2)
p (T1, T2 −

1

4
T−1

1 [R], k) ·


L(3 − k, χT ) if m = 4,
ζ(5 − 2k) if m = 3,
ζ(5 − 2k)L(2 − k) if m = 2.

(2) Let n = 3, and write T1 and R as T1 =

(
T̃1 t/2
tt t33

)
and R =

(
R1

r

)
with T̃1 ∈ A+

2 , t ∈ Z(2,1), t33 ∈ Z, R1 ∈ Z(2,2), and r ∈ Z(2,1). Assume that
2T̃1 ∈ GL2(Zp) for any prime number p ̸= p0 and 2T2 ∈ GL2(Zp0). Then we
have

c
(5)
k (T ) = 2[(m+1)/2]G(m−2)

p0
(T2, T1 −

1

4
T−1

2 [tR], k)

·
∏
p̸=p0

G(m−2)
p (T̃1,

(
t33 r
tr T2

)
− 1

4
T̃−1

1 [(t, R1)], k) ·


ζ(5 − 2k) if m = 3,

L(3 − k, χ
(4)
T ) if m = 4,

1 if m = 5.
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Let n = 2 or 3, and T1 ∈ A+
n . Then by the Hecke theory of Siegel modular

forms (cf. [1]), for an element T of A+
2 and a prime number p, we have the

following recursion formula for ϵ
(n,2)
k,p (i, T1, T ) :

ϵ
(n,2)
k,p (0, T1, T ) = ϵ

(n,2)
k,p (T1, T ),

and for i ≥ 1,

ϵ
(n,2)
k,p (i, T1, T ) =ϵ

(n,2)
k,p (i− 1, T1, pT ) + p2k−3ϵ

(n,2)
k,p (i− 1, T1, T/p)

+ pk−2
∑

D∈GL2(Z)UpGL2(Z)/GL2(Z)

ϵ
(n,2)
k,p (i− 1, T1, T [D]/p),

where Up =

(
1 0
0 p

)
. Let {fj}d

j=1 be an orthogonal basis of M2
k consisting

of Hecke eigenforms, and λj be the eigenvalue of T (p) on fj. Recall that by
Proposition 5.3 we have

ϵ
(n,2)
k,p (i, T1, T ) = Z(n+ 2, k)

d∑
j=1

λi
j c̃

∗(fj)a(T1, [fj]
n
2 )a(T, fj)

for any i ∈ Z≥0. Thus by using the same argument as in the proof of [18] we
have the following.

Proposition 5.9. Let T ∈ A+
2 , N ∈ A+

n with n = 2 or 3. Let f be a

Hecke eigenform in M2
k , and put λ = λ(T (p), f). Furthermore, let e

(n)
i =

ϵ
(n,2)
k,p (i, N, T ), and Φ(X) = ΦT (p)(X) =

∑d
i=0 bd−iX

i the characteristic poly-
nomial of T (p) in M2

k . Assume that Φ′(λ) ̸= 0. Then we have

Z(n+ 2, k)c∗(f)a(N, [f ]n2 )a(T, f) =

∑d−1
i=0

∑d−1
j=i e

(n)
d−1−jbj−iλ

i

Φ′(λ)
.

Furthermore, let M̃2
k be the orthogonal complement of the space spanned by

the Siegel-Eisenstein series Ẽ
(2)
k in M2

k . Let

Φ̃(X) := Φ(X)/(X − (1 + pk−2)(1 + pk−1))

and

ẽ
(n)
i = ϵ̃

(n,2)
k,p (i, N, T )

:= ϵ
(n,2)
k,p (i, N, T ) − ζ(5 − 2k)

ζ(1 − k)ζ(3 − 2k)
((1 + pk−2)(1 + pk−1))ic

(n)
k (N)c

(2)
k (T ).
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Then Φ̃(X) = Φ̃T (p)(X) is a polynomial, and we have

Z(n+ 2, k)c∗(f)a(N, [f ]n2 )a(T, f) =

∑d−2
i=0

∑d−2
j=i ẽ

(n)
d−1−j b̃j−iλ

i

Φ̃′(λ)
,

where we write Φ̃(X) =
∑d−1

i=0 b̃d−1−iX
i.

Proof. The first assertion is proved in the same manner as [16], Theorem
3.6. The second assertion is also proved in the same manner by remarking
λ(T (p), E

(2)
k ) = (1 + pk−1)(1 + pk−2).

Now we give some numerical examples. From now on put

T0 =

(
1 1/2

1/2 1

)
, T1 =

(
1 0
0 1

)
, and T2 =

 1 1/2 0
1/2 1 0
0 0 1

 .

If dimS1
l = 1, the normalized Hecke eigenform in S1

l is denoted by ∆l.

Example 1: The case n = 3, r = 1, and k = 12.
We have dimSν

12 = 1 for ν = 1, 2, 3. By Zagier [48],

L∗(11,∆12, St) =
224

39 · 54 · 72 · 11 · 13 · 17 · 19 · 23 · 691
.

Let χ12 be the Hecke eigenform in S2
12 defined in Kurokawa [22]. We

normalize χ12 so that its Fourier coefficient at T0 is 1, and denote it by χ̃12.
By using Kohnen-Skoruppa [21] we obtain the value

L∗(10, χ̃12, St) =
241

341 · 53 · 75 · 113 · 132 · 172 · 19 · 131 · 593
.

We have A(∆12) = (1) and A(χ̃12) = (1). Since the common denominator of

the Fourier coefficients of E
(1)
12 (resp. E

(2)
12 , [∆12]

2
1) is 691 (resp. 131 ·593 ·691 ,

7), we have µ12(1) = 691 (resp. µ12(2) = 7·131·593·691); for the denominator
of Fourier coefficients of [∆12]

2
1, see Kurokawa [23]. We have

ζ(−19) =
283 · 617

23 · 3 · 52 · 11
.

Moreover we have

ϵ̃
(3,2)
12,2 (0, T2, T1) = −1431288859512766464

53678953
,
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and

ϵ̃
(3,2)
12,2 (1, T2, T1) =

32414222074496738918400

53678953
.

Thus by Proposition 5.9 we have

Z(5, 12)a(T1, [∆12]
2
1)a(T2, [∆12]

3
1)c

∗(∆12) = −215 · 37 · 7 · 23 · 1483

691
.

By [36] we have a(T1, [∆12]
2
1) = 2 · 33 · 23/7. Thus for p = 283 or 617 we have

ordp(ζ(−19)L∗(11,∆12, St)a(T2, [∆12]
3
1)

2
) = −1.

Thus the conditions of Theorem 3.1 are safisfied with f = ∆12 and p = 283
or 617. Let F12 ∈ S3

12 be any Hecke eigenform. Then by Theorem 3.1 we
have

λ(T, F12) ≡ λ(T, [∆12]
3
1) (mod 283 · 617) for all T ∈ H3

Z. (5.1)

The congruence (5.1) follows also from the first case of Miyawaki’s conjec-
ture [29] which was proved by Ikeda [13] telling that

L(s, F12, spin) = L(s− 9,∆12)L(s− 10,∆12)L(s,∆12 ⊗ ∆20), (5.2)

where L(s, F12, spin) is the spinor L-function attached to F12 and L(s,∆12 ⊗
∆20) is the Rankin-Selberg convolution attached to the pair (∆12,∆20); from
(5.2) we have in particular

λ(T (p), F12) − λ(T (p), [∆12]
3
1) = λ(T (p),∆12)(λ(T (p),∆20) − λ(T (p), E

(1)
20 ))

for all prime numbers p. Thus the equality (5.2) naturally explains the
congruence (5.1) for T = T (p). The other types of T ∈ H3

Z are treated
similarly.

Example 2: The case n = 3, r = 2, and k = 14.
We have dimM2

14 = 2 and dimS2
14 = 1. Let χ14 be the Hecke eigenform in S2

14

defined in Kurokawa [22]. We normalize χ14 so that its Fourier coefficient
at T0 is 1, and denote it by χ̃14. We note that a(T1, χ̃14) = −2. Now we have

ϵ̃
(2,2)
14,2 (0, T0, T1) =

−213 · 36 · 53 · 72 · 11 · 23 · 691

657931
.
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Hence by Proposition 5.9 we have

Z(4, 14)c∗(χ̃14)a(T1, χ̃14) =
−213 · 36 · 53 · 72 · 11 · 23 · 691

657931
.

Thus we have
ord691(c

∗(χ̃14)) = 1.

We note that 691 appears in the numerator of c∗(χ̃14). This is not so surprising
because χ14 is the Saito-Kurokawa lift of ∆26 and we have

L(12, χ̃14, St) = ζ(12)L(24,∆26)L(25,∆26),

where L(s,∆26) is Hecke’s L-function attached to ∆26. We also note that
it is possible to compute c∗(χ̃14) exactly by using the result of Kohnen-
Skoruppa [21]. But here we have used the method in [16]. Now we have

ϵ̃
(3,2)
14,2 (0, T2, T1) =

215 · 38 · 52 · 72 · 11 · 23 · 2393

657931
.

Thus we have

Z(5, 14)a(T1, χ̃14)a(T2, [χ̃14]
3
2)c

∗(χ̃14) =
215 · 38 · 52 · 72 · 11 · 23 · 2393

657931
.

We note that Z(4, 20) = Z(5, 20) and it is a 691-unit. Thus we have

ord691(c
∗(χ̃14)a(T2, [χ̃14]

3
2)

2) = −1.

We also note that ζ(−13)ζ(−25)ζ(−23)ζ(−21) is coprime with 691 and that
A(χ̃14) = (1). Since the common denominator of the Fourier coefficients of

E
(1)
14 (resp. E

(2)
14 ) is 1 (resp. 657931), we have µ14(1) = 1 (resp. µ14(2) =

657931). Let F14 be the cusp form in S3
14 constructed by Miyawaki [29].

Then S3
14 is spanned by F14. Thus by Theorem 3.1 we have

λ(T, F14) ≡ λ(T, [χ̃14]
3
2) (mod 691) for all T ∈ H3

Z. (5.3)

Some Hecke eigenvalues of [χ̃14]
3
2 and F14 have been computed, and we can

verify this congruence for some T (p) ∈ H3
Z directly. For example, we have

λ(T (2), [χ̃14]
3
2) = 12240(1+211) and λ(T (2), F14) = −27 · 2295. Thus we have

λ(T (2), F14) − λ(T (2), [χ̃14]
3
2) = −24 · 33 · 5 · 17 · 691.

The congruence (5.3) supports the second case of Miyawaki’s conjecture
[29] predicting that

L(s, F14, spin) = L(s− 12,∆12)L(s− 13,∆12)L(s,∆12 ⊗ ∆26).
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Remark 5.10. Similarly we can give examples of congruence between Klingen-
Eisenstein series and cusp forms in the case n = 3, r = 2, and k = 18. But
we omit the details. We also note that we can compute c∗(F ) and a(T, [F ]32)
for a Hecke eigenform F in S2

16 and some T ∈ A+
3 , but as far as we compute,

there is no prime ideal satisfying the conditions in Theorem 3.1.

Example 3: The case n = 3, r = 2, and k = 20.
We have dimM2

20 = 5 and dimS2
20 = 3. We also note that dimS1

20 = 1 and

dimS2
38 = 2. Let χ

(1)
20 , χ

(2)
20 , and χ

(3)
20 be the Hecke eigenforms in S2

20 defined
in Kurokawa [22]. (See also, Skoruppa [43].) We modify them and put

χ̃
(i)
20 = χ

(i)
20/2 for i = 1, 2, 3. Then these form an orthogonal basis of S2

20, and

therefore [∆20]
2
1, χ̃

(1)
20 , χ̃

(2)
20 , and χ̃

(3)
20 form a basis of M̃2

20. We note that χ̃
(1)
20 and

χ̃
(2)
20 are the Saito-Kurokawa lifts of the normalized Hecke eigenforms in S1

38.
Put λi = 48(−2025+

√
D) and 48(−2025−

√
D) withD = 63737521, andK =

Q(
√
D). Then λ1, λ2 satisfy the equationX2+194400X2−137403408384 = 0.

Then λ(T (2), χ̃
(i)
20 ) = λi +3 ·218 for i = 1, 2, and λ(T (2), χ̃

(3)
20 ) = −28 ·32 ·5 ·73.

Furtheremore λ(T (2), [∆20]
2
1) = 456(1 + 218). Thus

Φ̃T (2)(X) = (X − 456(1 + 218))

· ((X − 3 · 218)2 + 194400(X − 3 · 218) − 137403408384)(X + 28 · 32 · 5 · 73).

We note that Q(χ̃
(i)
20 ) = K for i = 1, 2, and Q(χ̃

(3)
20 ) = Q. As for Fourier

coefficients of these Hecke eigenforms, we have

a(T0, χ̃
(i)
20 ) = −5092 − λi/96 (i = 1, 2), a(T0, χ̃

(3)
20 ) = 1,

and
a(T1, χ̃

(i)
20 ) = −10(4816 + λi/96) (i = 1, 2), a(T1, χ̃

(3)
20 ) = 4.

Thus we have
NK/Q(a(T0, χ̃

(i)
20 )) = 22 · 34 · 5 · 19 · 23,

and
NK/Q(a(T1, χ̃

(i)
20 )) = −25 · 3 · 52 · 23 · 2659

for i = 1, 2. Then by using Mathematica, we compute

ϵ̃
(2,2)
20,2 (0, T0, T1) =

−7129134978298899961205241642113437021079040

996291536301166998227
,

ϵ̃
(2,2)
20,2 (1, T0, T1) =

−16560123318339885651495180238267387381880020070400

26926798278409918871
,
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ϵ̃
(2,2)
20,2 (2, T0, T1) =

−1958314136249483542383671248105980953272860946852098048000

26926798278409918871
,

and

ϵ̃
(2,2)
20,2 (3, T0, T1)

=
−233353709093083083420985167849126058893666870076250080686735360000

26926798278409918871
.

Thus by Proposition 5.9 we can show that

NK/Q(Z(4, 20)c∗(χ̃
(i)
20 )a(T0, χ̃

(i)
20 )a(T1, χ̃

(i)
20 ))

=
−236 · 320 · 515 · 78 · 113 · 133 · 173 · 29 · 31 · 37 · 67 · 83 · 2659 · 438672 · 635893 · 701159

181 · 349 · 1009 · 14581603 · 154210205991661
(5.4)

for i = 1, 2, and

Z(4, 20)c∗(χ̃
(3)
20 )a(T0, χ̃

(3)
20 )a(T1, χ̃

(3)
20 ) = −221 · 311 · 55 · 76 · 112 · 13 · 17 · 199 · 691

35059
.

Now we consider the primes 43867 and 691, which appear in the numerator
of the above standard zeta values. We note that 43867 remains prime in K
and 691 splits in K. Now we have

ϵ̃
(3,2)
20,2 (0, T2, T1) =

−422769133776491922355788958004712309719040

26926798278409918871
,

ϵ̃
(3,2)
20,2 (1, T2, T1) =

−3065470659573695905231575534099294593537133772800

26926798278409918871
,

ϵ̃
(3,2)
20,2 (2, T2, T1) =

−344922817945702915708699456981307113314117611967479808000

26926798278409918871
,

and

ϵ̃
(3,2)
20,2 (3, T2, T1)

=
−41117816651815431544554669440160698542881803266502254393294848000

26926798278409918871
.

Thus we have

NK/Q(Z(5, 20)a(T1, χ̃
(i)
20 )a(T2, [χ̃

(i)
20 ]32)c

∗(χ̃
(i)
20 ))

=
−241 · 322 · 512 · 77 · 112 · 13 · 172 · 29 · 31 · 67 · 83 · 2659 · 635893 · 701159 · 93044315702749

181 · 349 · 1009 · 14581603 · 154210205991661
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for i = 1, 2, and

Z(5, 20)a(T1, χ̃
(3)
20 )a(T2, [χ̃

(3)
20 ]32)c

∗(χ̃
(3)
20 ) = −224 · 3115̇6 · 74 · 11 · 13 · 17 · 199 · 1301

35059
.

We note that Z(4, 20) = Z(5, 20) and ord691(Z(4, 20)) = ord43867(Z(4, 20)) =
0. This implies

ord43867(c
∗(χ̃

(i)
20 )a(T2, [χ̃

(i)
20 ]32)

2) = −1

for i = 1, 2 and
ord691(c

∗(χ̃
(3)
20 )a(T2, [χ̃

(3)
20 ]32)

2) = −1.

The prime 43867 does not satisfy the condition (v) for f = χ̃
(i)
20 with i =

1 or 2 since both c∗(χ̃
(1)
20 ) and c∗(χ̃

(2)
20 ) are divisible by 43867. Hence we

consider only the prime 691. We check the conditions of Theorem 3.1 for
f = χ

(3)
20 . As above, the conditions (i)-(iii) are satisfied. We easily see that

ζ(−19)ζ(−37)ζ(−35)ζ(−33) is coprime with 691. By Dummigan [7],

ord691(c
∗(∆20)) = 0.

By [30], p. 124, we have

A(χ̃
(i)
20 ) = 214 · 33 · 5 · 7 · 11(

√
D) in OK for i = 1, 2 (5.5)

with D = 181 · 349 · 1009 and A(χ̃
(3)
20 ) = (κ(χ̃

(3)
20 )) = (29 · 32 · 5 · 7 · 11) in

Z. For any prime ideal q in K lying over 691, we have ordq(c
∗(χ̃

(i)
20 )) ≥ 0

by Lemma 4.4 and (5.5). Hence from (5.4) we have ordq(c
∗(χ̃

(i)
20 )) = 0 for

i = 1, 2. Since the common denominator of the Fourier coefficients of E
(1)
20

(resp. E
(2)
20 , [∆20]

2
1) is 283 · 617 (resp. 283 · 617 · 154210205991661 , 11 · 712),

we have

µ20(1) = 283 · 617, µ20(2) = 11 · 712 · 283 · 617 · 154210205991661.

Hence by Theorem 3.1 there exists a Hecke eigenform G ∈ S3
20 such that

NQ(G)/Q(λ(T,G) − λ(T, [χ̃
(3)
20 ]32)) ≡ 0 (mod 691) for all T ∈ H3

Z.

It seems difficult to construct this G concretely since dimS3
20 = 6 by Tsuyu-

mine [45] and Runge [39].
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