116 research outputs found

    Thermal diffusivity recovery and defect annealing kinetics of self-ion implanted tungsten prob e d by insitu transient grating spectroscopy

    Get PDF
    Tungsten is a promising candidate material for plasma-facing armour components in future fusion reactors. A key concern is irradiation-induced degradation of its normally excellent thermal transport properties. In this comprehensive study, thermal diffusivity degradation in ion-implanted tungsten and its evolution from room temperature (RT) to 1073 K is considered. Five samples were exposed to 20 MeV self-ions at RT to achieve damage levels ranging from 3.2 x 10(-4) to 3.2 displacements per atom (dpa). Transient grating spectroscopy with insitu heating was then used to study thermal diffusivity evolution as a function of temperature. Using a kinetic theory model, an equivalent point defect density is estimated from the measured thermal diffusivity. The results showed a prominent recovery of thermal diffusivity between 450 K and 650 K, which coincides with the onset of mono-vacancy mobility. After 1073 K annealing samples with initial damage of 3.2 x 10(-3) dpa or less recover close to the pristine value of thermal diffusivity. For doses of 3.2 x 10(-2) dpa or higher, on the other hand, a residual reduction in thermal diffusivity remains even after 1073 K annealing. Transmission electron microscopy reveals that this is associated with extended, irradiation-induced dislocation structures that are retained after annealing. A sensitivity analysis shows that thermal diffusivity provides an efficient tool for assessing total defect content in tungsten up to 10 0 0 K. (c) 2022 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc.Peer reviewe

    Direct observation of mono-vacancy and self-interstitial recovery in tungsten

    Get PDF
    Reliable and accurate knowledge of the physical properties of elementary point defects is crucial for predictive modeling of the evolution of radiation damage in materials employed in harsh conditions. We have applied positron annihilation spectroscopy to directly detect mono-vacancy defects created in tungsten through particle irradiation at cryogenic temperatures, as well as their recovery kinetics. We find that efficient self-healing of the primary damage takes place through Frenkel pair recombination already at 35 K, in line with an upper bound of 0.1 eV for the migration barrier of self-interstitials. Further self-interstitial migration is observed above 50 K with activation energies in the range of 0.12-0.42 eV through the release of the self-interstitial atoms from impurities and structural defects and following recombination with mono-vacancies. Mono-vacancy migration is activated at around 550 K with a migration barrier of E-m(V) = 1.85 +/- 0.05 eV. (C) 2019 Author(s).Peer reviewe

    Deposition of impurity metals during campaigns with the JET ITER-like Wall

    Get PDF
    Post mortem analysis shows that mid and high atomic number metallic impurities are present in deposits on JET plasma facing components with the highest amount of Ni and W, and therefore the largest sink, being found at the top of the inner divertor. Sources are defined as “continuous” or “specific”, in that “continuous” sources arise from ongoing erosion from plasma facing surfaces and “specific” are linked with specific events which decrease over time until they no longer act as a source. This contribution evaluates the sinks and estimates sources, and the balance gives an indication of the dominating processes. Charge exchange neutral erosion is found to be the main source of nickel, whereas erosion of divertor plasma facing components is the main source of tungsten. Specific sources are shown to have little influence over the global mid- and high-Z impurity concentrations in deposits.Peer reviewe

    Freedom of choice to migrate: adaptation to climate change in Bangladesh

    Get PDF
    Adaptation is an essential part of climate change policy. In areas where impacts are likely to be severe, migration is considered to be an adaptation option. In Bangladesh coastal areas migration due to climate change is contingent on people’s freedom of choice at individual and household level. Following Amartya Sen’s capability approach, we argue that there should be a line drawn between migrations by free choice versus forced migration. Sen’s capability approach focuses on the importance of people’s freedom of choice to act, and the ability to achieve what they consider valuable in their life. In this paper, we use an extensive empirical work engaging 22 focus groups discussions (8–12 individuals in each group) and 14 Key Informants Interviews in South-West Bangladesh to elicit how freedom of choice changes with the economic class and social status of an individual. Using these data we apply Sen’s capability approach to understand the role of the freedom of choice when considering migration as an adaptation option. We argue that the capability approach is essential in revealing a thin border between migration as a (planned) adaptation option and forced migration

    Preparation and in vivo evaluation of red blood cell membrane coated porous silicon nanoparticles implanted with Tb-155

    Get PDF
    Introduction: Porous silicon (PSi) nanoparticles are capable of delivering therapeutic payloads providing targeted delivery and sustained release of the payloads. In this work we describe the development and proof-of-concept in vivo evaluation of thermally hydrocarbonized porous silicon (PSi) nanoparticles that are implanted with radioactive Tb-155 atoms and coated with red blood cell (RBC) membrane (Tb-155-THCPSi). The developed nanocomposites can be utilized as an intravenous delivery platform for theranostic radionuclides.Methods: THCPSi thin films were implanted with Dy-155 ions that decay to Tb-155 at the ISOLDE radioactive ion-beam (RIB) facility at CERN. The films were processed to nanoparticles by ball-milling and sonication, and subsequently coated with either a solid lipid and RBC membrane or solely with RBC membrane. The nanocomposites were evaluated in vitro for stability and in vivo for circulation half-life and ex vivo for biodistribution in Balb/c mice.Results: Nanoporous THCPSi films were successfully implanted with Tb-155 and processed to coated nanopartides. The in vitro stability of the particles in plasma and buffer solutions was not significantly different between the particle types, and therefore the RBC membrane coated particles with less laborious processing method were chosen for the biological evaluation. The RBC membrane coating enhanced significantly the blood half-life compared to bare THCPSi particles. In the ex vivo biodistribution study a pronounced accumulation to the spleen was found, with lower uptake in the liver and a minor uptake in the lung, gall bladder and bone marrow.Conclusions: We have demonstrated, using Tb-155 RIB-implanted PSi nanoparticles coated with mouse RBC membranes, the feasibility of using such a theranostic nanosystem for the delivery of RIB based radionuclides with prolonged circulation time.Advances in knowledge and implications for patient care: For the first time, the RIB implantation technique has been utilized to produce PSi nanoparticle with a surface modified for better persistence in circulation. When optimized, these particles could be used in targeted radionuclide therapy with a combination of chemotherapeutic payload within the PSi structure. </div

    Deposition of impurity metals during campaigns with the JET ITER-like Wall

    Get PDF
    Post mortem analysis shows that mid and high atomic number metallic impurities are present in deposits on JET plasma facing components with the highest amount of Ni and W, and therefore the largest sink, being found at the top of the inner divertor. Sources are defined as “continuous” or “specific”, in that “continuous” sources arise from ongoing erosion from plasma facing surfaces and “specific” are linked with specific events which decrease over time until they no longer act as a source. This contribution evaluates the sinks and estimates sources, and the balance gives an indication of the dominating processes. Charge exchange neutral erosion is found to be the main source of nickel, whereas erosion of divertor plasma facing components is the main source of tungsten. Specific sources are shown to have little influence over the global mid- and high-Z impurity concentrations in deposits

    An isomorphous replacement method for efficient de novo phasing for serial femtosecond crystallography

    Get PDF
    Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) holds great potential for structure determination of challenging proteins that are not amenable to producing large well diffracting crystals. Efficient de novo phasing methods are highly demanding and as such most SFX structures have been determined by molecular replacement methods. Here we employed single isomorphous replacement with anomalous scattering (SIRAS) for phasing and demonstrate successful application to SFX de novo phasing. Only about 20,000 patterns in total were needed for SIRAS phasing while single wavelength anomalous dispersion (SAD) phasing was unsuccessful with more than 80,000 patterns of derivative crystals. We employed high energy X-rays from SACLA (12.6 keV) to take advantage of the large anomalous enhancement near the L-III absorption edge of Hg, which is one of the most widely used heavy atoms for phasing in conventional protein crystallography. Hard XFEL is of benefit for de novo phasing in the use of routinely used heavy atoms and high resolution data collection.open112530Ysciescopu
    corecore