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In this work, we have studied the applicability of Co(BTSA)2(THF) (BTSA = 

bis(trimethylsilyl)amido) (THF = tetrahydrofuran) in atomic layer deposition (ALD) of 

cobalt oxide thin films. When adducted with THF, the resulting Co(BTSA)2(THF) 

showed good volatility and could be evaporated at 55 °C, which enabled film deposition 

in the temperature range of 75–250 °C. Water was used as the co-reactant, which led to 

the formation of Co(II) oxide films. The saturative growth mode characteristic to ALD 

was confirmed with respect to both precursors at deposition temperatures of 100 and 200 

°C. According to grazing incidence X-ray diffraction measurements, the films contain 

both cubic rock salt and hexagonal wurtzite phases of CoO. X-ray photoelectron 
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spectroscopy measurements confirmed that the primary oxidation state of cobalt in the 

films is +2. Film composition was analyzed using time-of-flight elastic recoil detection 

analysis (ToF-ERDA), which revealed the main impurities in the films to be H and Si. 

The Si impurities originate from the BTSA ligand and increased with increasing 

deposition temperature, which indicates that Co(BTSA)2(THF) is best suited for low 

temperature deposition. To gain insight to the surface chemistry of the deposition 

process, an in-situ reaction mechanism study was conducted using quadrupole mass 

spectroscopy and quartz crystal microbalance techniques. Based on the in-situ 

experiments, it can be concluded that film growth occurs via a ligand exchange 

mechanism. 

I. INTRODUCTION 

 

Cobalt forms several oxygen containing compounds, including oxides, hydroxides 

and oxyhydroxides.1 These materials, especially in nanostructured form, find use in 

emerging technologies related to energy production and storage, such as 

(photo)electrochemical water splitting2–5 and lithium ion batteries.6–8  Regarding these 

applications, a control of the oxidation state of cobalt is of great importance, as cobalt 

monoxide (CoO) and the mixed valence cobalt(II,III) oxide (Co3O4) differ from one 

another both structurally and electronically. In addition to controlling the oxidation state 

of cobalt, the amount of impurities present in these materials should be minimized, as 

they can affect the aforementioned structural and electronic properties. In the bulk form, 

pure CoO is a charge transfer insulator9 that crystallizes in the rock salt form.10 In 

nanocrystalline form, cobalt monoxide can crystallize also in the cubic zinc blende and 
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hexagonal wurtzite forms.10–12 Co3O4 on the other hand, is a p-type semiconductor13,14 

that assumes the spinel-type crystal structure.15 While the bulk properties related to the 

structure and electronic properties of cobalt oxides are well defined, the surface 

chemistry of these materials is more complex. For example, both CoO and Co3O4 can 

undergo surface hydroxylation upon exposure to moisture1,3,16  and at elevated 

temperatures, the hydroxides can decompose back to oxides.1 Additionally, the surface of 

the lower valence CoO is readily oxidized to Co3+ in ambient conditions, which makes 

obtaining pure cobalt monoxide samples difficult.17 Due to the challenges associated with 

the oxidation state and surface chemistry of cobalt oxides, controllable and repeatable 

methods should be explored for their fabrication. 

In this study, we have used the atomic layer deposition (ALD) technique for 

creating nanocrystalline cobalt(II) oxide thin films. ALD is an advanced variant of the 

chemical vapor deposition (CVD) method and is based on controlled and self-limiting 

surface reactions between alternately supplied film-forming precursors.18 In recent years, 

ALD has been gaining increasing attention in the field of nanotechnology as it can be 

used to deposit uniform films of oxides, sulfides, nitrides, fluorides and metals with 

unmatched conformality and thickness control in the sub-nanometer range.19 In a typical 

ALD process for metal oxides, thin films are deposited using a combination of two film-

forming precursors, i.e. the metal containing precursor, and the oxygen source. The metal 

precursors include halides, alkoxides, β-diketonates and other, more complex 

metalorganic or organometallic compounds whereas the most common oxygen sources 

are water vapor, oxygen plasma and ozone.20 A majority of the reported ALD cobalt 

oxide processes rely on the use of either oxygen plasma or ozone to remove the ligands of 
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the metalorganic or organometallic cobalt precursors.21–29 Due to the high oxidative 

power of O2 plasma and O3, the ligand combustion approach leads to oxidation of cobalt 

to Co3+ and the subsequent formation of Co3O4 films. In order to deposit CoO films, the 

use of highly oxidizing co-reactants should therefore be avoided. Reports on ALD of 

CoO are fewer and they are all based on the use of metalorganic cobalt precursors where 

the oxidation state of Co is +2 and that are reactive towards water.30–32 In the case of 

Co(iPrAMD)2 (
iPrAMD = N,N’-di-isopropylacetamidinate), CoO films have been 

deposited at 170–180 °C 31 and at 250 °C 30, but the saturative growth mode characteristic 

to ALD processes was not confirmed in these reports. In a more recent study on ALD of 

CoO films, a cobalt(II) chloride diamine adduct CoCl2(TMEDA), (TMEDA = 

N,N,N’,N’-tetramethyl-ethylenediamine) and H2O were used to deposit stoichiometric 

and crystalline cobalt monoxide films at 225–300 °C.32 The drawback CoCl2(TMEDA) 

is, however, that it requires a relatively high source temperature of 170 °C, which 

effectively limits the deposition temperature range to 200 °C and above. 

In order to explore the possibility to deposit cobalt monoxide thin films at low 

temperatures, we have studied the combination of a silylamide cobalt(II) precursor, 

Co(BTSA)2(THF) (THF = tetrahydrofuran) (BTSA = bis(trimethylsilyl)amido) and water 

vapor in ALD. The BTSA ligand can be used to volatilize many transition metals, 

including Cr, Mn, Fe, Co, Cu, Sn and Ge33 and therefore presents interesting 

opportunities for gas phase deposition of thin films containing the said elements. 

Previous reports of ALD that employ homoleptic metal BTSA precursors include the 

deposition of lithium silicate,34,35 lithium niobate,36 bismuth oxide,37 iron oxide38, tin 

oxide39 , lanthanum oxide40–43, lanthanum aluminum oxide44 and praseodymium oxide.43 
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When metal BTSA precursors are used in ozone based ALD, the resulting films are a 

mixture of oxide and silicate due to the formation of non-volatile –O–Si–O– moieties in 

the films.34,35,39 Moreover, heteroleptic metal precursors containing the BTSA ligand 

have been used in ALD of hafnium oxide/silicate45, copper46 and also gold thin films47, 

which is a further indication of the potential of the BTSA ligand in ALD chemistry. 

In the study reported herein, Co(BTSA)2(THF) was synthesized and its volatility 

was evaluated using thermal gravimetry. Co(BTSA)2(THF) was found to volatilize in 

vacuo already at 55 °C and thus proved to be promising for deposition of cobalt oxide 

films. Deposition experiments were carried out within a temperature window of 75–250 

°C. The lower and higher limits of the deposition temperature window were defined by 

the evaporation temperature and the reductive decomposition onset of the cobalt 

precursor, respectively. In addition to the saturation studies and film characterization, in-

situ reaction mechanism studies were conducted using quartz crystal microbalance 

(QCM) and quadrupole mass spectroscopy (QMS) techniques.48 The in-situ studies show 

that the film growth occurs via a ligand exchange mechanism. However, based on the 

compositional analysis of the films and the in-situ studies, minor thermal decomposition 

or condensation of the cobalt precursor are affecting the film growth as well. 

 

II. EXPERIMENT 

A. Precursor synthesis 

 

Synthesis and handling of air and moisture sensitive chemicals were done under 

rigorous exclusion of air and moisture using standard Schlenk and glove box techniques. 
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Anhydrous CoCl2 (99%, Aldrich) and Li(BTSA) (97%, Aldrich) were used as received. 

THF was freshly distilled from sodium benzophenone ketyl. Thermogravimetric analysis 

was performed using a Mettler Toledo STARe system equipped with a TGA850 

thermobalance. The measurements were done at atmospheric pressure using N2 (50 

mL/min) as the purge gas. The heating rate was 10 °C/min, and the sample size was 10±1 

mg. Melting points were taken from single-differential thermal analysis (SDTA) data 

measured by the thermobalance. Synthesis of Co(BTSA)2(THF) was done modifying a 

procedure found in the literature.49 In short, 3.42 g CoCl2 (26.34 mmol) was weighed into 

a 300 ml Schlenk bottle. 50 ml of THF was added. 8.82 g of Li(BTSA) (52.71 mmol) 

dissolved in 100 ml of THF was added dropwise to the stirred suspension. After stirring 

the resulting solution for 2 hours at RT, excess THF was evaporated away. The resulting 

dark green solid was transferred to a sublimation apparatus and sublimed at 80–95 °C / 

0.4 mbar. Yield of the dark green product was 7.61 g (63.9%). m.p. 69.5–72 °C. 

B. Film deposition 

 

Cobalt oxide films were deposited using a commercial, hot-wall F-120 ALD 

reactor (ASM Microchemistry Ltd.) operated in the cross-flow configuration.50 Nitrogen 

(99.999 %, O2 ≤ 5 ppm, H2O ≤ 5 ppm, AGA) was used as carrier and purging gas at a 

flow rate of 400 sccm. The reactor pressure during the depositions was approximately 10 

mbar. Native oxide terminated Si (100) (Okmetic Oy, Vantaa, Finland) and soda lime 

glass (SLG) cut to 5×5 cm2 squares were used as substrates. The silicon substrates were 

used as received whereas the glass substrates were cleaned using ultrasonication in 

successive baths of an alkaline detergent, ethanol and deionized water. The cobalt 
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precursor, Co(BTSA)2(THF), was evaporated from an open glass boat held inside the 

reactor at 55 °C. Water vapor was introduced to the ALD reactor through needle and 

solenoid valves from an external reservoir held at room temperature. Films were 

deposited in a temperature range of 75–250 °C. 

C. In-situ reaction mechanism studies 

 

The in-situ measurements were performed using a modified F-120 ALD reactor 

equipped with a quartz crystal microbalance (QCM) and a quadrupole mass spectrometer 

(QMS).51 In short, the reactor consists of two chambers, the deposition chamber where 

the QCM is located, and the QMS chamber. The deposition chamber also contains a set 

of large area SLG substrates in order to obtain a sufficient amount of gaseous reaction 

byproducts for the QMS analyzer. The combined area of the SLG substrates and reactor 

walls is approximately 3500 cm2. The two chambers are connected through a 100 µm 

orifice. The base pressure in the deposition chamber is approximately 10 mbar whereas 

the pressure in the QMS chamber is in the order of 10−5 mbar. The pressure difference is 

obtained by differential pumping through the orifice by using turbomolecular and 

mechanical pumps. The gaseous species are analyzed with a Hiden HAL/3F 501 RC 

QMS equipped with a Faraday cup detector. Ionization energy of 70 eV was used in the 

analyses. Mass changes in the deposition chamber were monitored with a Maxtek TM 

400 QCM operated at a sampling rate of 20 Hz. Nitrogen (99.999 %, O2 ≤ 5 ppm, H2O ≤ 

5 ppm, AGA) was used as carrier and purging gases. D2O (99.96 % D, Eurisotop) was 

used instead of H2O in all of the in-situ measurements, as deuterium helps to identify 

byproducts of ligand exchange reactions with QMS. 
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D. Film characterization 

 

All characterizations were done using films deposited on native oxide terminated 

Si(100) substrates unless otherwise noted. Film thicknesses were measured with 

ellipsometry using a Film Sense FS-1 Multi-Wavelength instrument. Film thicknesses 

were calculated using the Cauchy model. The origin of the error bars in data related to 

film thickness is the fit error of the Cauchy model. In addition, the thicknesses of certain 

films were measured using X-ray reflectivity (XRR) and UV-Vis spectroscopy in 

reflectance mode. The XRR measurements were performed using a PANalytical X’Pert 

Pro MPD diffractometer and the UV-Vis measurements with a Hitachi U2000 

spectrophotometer. Film thickness was calculated from the UV-Vis reflectance data using 

the ThinFilm software package.52 For 50 nm thick films (as measured with XRR), 

ellipsometry and UV-Vis measurements resulted in thickness values of 50 ± 1 nm, 

proving that the optical methods could be used for accurate determination of film 

thickness in this range. 

Film structure was determined via grazing incidence X-ray diffraction (GI-XRD) 

measurements using a Rigaku SmartLab X-ray diffractometer. The diffractograms were 

collected using Cu Kα radiation (λ = 1.54 Å) at an incident angle of 1°. 

Film morphology was studied with atomic force microscopy (AFM). The AFM 

images were collected with a Veeco V Multimode instrument equipped with a Nanoscope 

V controller. The imaging was performed at a scan rate of 1 Hz in the intermittent contact 

mode (tapping mode) in air using Si probes with a nominal tip radius of < 10 nm 

(Bruker). The images were flattened and planefitted in order to remove artefacts caused 
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by scanner bow and sample tilt. Surface roughness of the films was calculated as average 

root mean square values (Rq) from 2×2 µm2 images. 

The composition of the films was determined with time-of-flight elastic recoil 

detection analysis (ToF-ERDA) using an ion-beam setup described in full elsewhere.53 

The cobalt oxide films analyzed with ToF-ERDA were deposited on 50 nm thick ALD 

TiO2 films made using the Ti(OMe)4 + H2O process at 300 °C 54 to avoid disturbance 

from the silicon substrate while quantifying the level of Si impurities originating from the 

BTSA ligands. 

The chemical state of cobalt and oxygen in the films was determined using X-ray 

photoelectron spectroscopy (XPS). The XPS measurements were done in a system 

consisting of an Argus spectrometer (Omicron NanoTechnology GmbH) and a standard 

Mg source (Kα line, photon energy of 1253.6 eV). Binding energies were calibrated 

using the C 1s peak of ambient hydrocarbons found at 284.8 eV. No sputtering was 

performed on the samples. Peak fitting and data analysis was done using the CasaXPS 

software package (www.casaxps.com). 

 

III. RESULTS AND DISCUSSION 

A. Precursor properties  

 

Co(BTSA)2(THF) was synthesized using a simple literature metathesis reaction 

between CoCl2 and LiBTSA in THF.49 In Co(BTSA)2(THF), THF acts as an adduct 

forming ligand and coordinates to cobalt in order to compensate for the coordinative 

unsaturation of the metal center. The coordinative bond between Co and THF in 
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Co(BTSA)2(THF) is surprisingly strong and cannot be broken by refluxing in solvent 

with a high boiling point, i.e. toluene or xylene. Heating Co(BTSA)2(THF) under vacuum 

does not lead to removal of THF either but the compound sublimes intact, instead. If the 

synthesis is done in Et2O instead of THF, the dimeric [Co(BTSA)2]2 can be obtained.49 In 

the dimeric version of Co(BTSA)2,  two of the trimethylsilylamide ligands act as bridging 

η2-ligands between two cobalt atoms. 

Prior to film deposition experiments, the thermal properties of both 

Co(BTSA)2(THF) and the dimeric [Co(BTSA)2]2 were evaluated using thermo-

gravimetric analysis (TGA). Both versions of Co(BTSA)2 were found to volatilize in a 

single step which shows that neither of the compounds undergoes detrimental 

decomposition upon heating in oxygen and moisture free conditions (Fig. 1). Residual 

masses of the two cobalt precursors were in the range of 3–4 %. The residues are likely to 

form in a reaction between the cobalt precursor and ambient moisture when loading the 

sample to the TGA instrument. 

 

FIG. 1. (Color online) TGA graphs Co(BTSA)2(THF) and [Co(BTSA)2]2 as measured 

under an N2 gas flow. The molecular structures of the precursors are shown as insets.  
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According to TGA performed at atmospheric pressure, the dimeric [Co(BTSA)2]2 

evaporates at a slightly lower temperature than the monomeric Co(BTSA)2(THF). 

However, in ALD conditions, i.e. a pressure of approximately 10 mbar, 

Co(BTSA)2(THF) could be evaporated at a temperature of 55 °C, whereas [Co(BTSA)2]2 

required a source temperature of 70 °C. Melting points of Co(BTSA)2(THF) and 

[Co(BTSA)2]2 were measured to be 69.5–72 °C and 94–98.5 °C respectively, which 

indicates that both precursors are solid at their respective ALD source temperatures. As 

Co(BTSA)2(THF) exhibited better volalitity in vacuo, it was used in all further film 

deposition experiments in order to allow a wider deposition temperature range. 

B. Film deposition 

 

Film deposition was studied in a temperature range of 75–250 °C. The growth per 

cycle value (GPC) of the cobalt oxide films was found to have a strong dependence on 

the deposition temperature (Fig. 2) 
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FIG. 2. Effect of deposition temperature to GPC of the cobalt oxide films. The dashed line 

connecting the data points is to guide the reader’s eye. 

 

At the lowest deposition temperature studied, 75 °C, the films grew with a GPC 

of 1.2 Å. Upon increasing the deposition temperature to 100 and 125 °C, the GPC leveled 

to a constant 1.1 Å. The higher GPC at 75 °C can be explained by a higher coverage of 

surface –OH groups, or even the formation of Co(OH)2 intermediates, which both can 

increase the adsorption density of the cobalt precursor. Deposition experiments done at 

150, 200 and 250 °C resulted in GPC values of 0.78, 0.43 and 0.20 Å, respectively. 

Attempts to deposit cobalt oxide films at 275 °C led to an accumulation of a metallic 

solid in the hot end of the precursor tube of Co(BTSA)2(THF), indicating that the cobalt 

precursor was undergoing reductive thermal decomposition. Therefore, 250 °C was 

chosen as the upper limit for the deposition experiments. 

Regarding the decreasing GPC with increasing deposition temperature, similar 

results have been reported also with other water-based metal oxide ALD processes using 

metal precursors with BTSA-ligands, namely Fe(BTSA)2 
38, Sn(BTSA)2 

39 and 

HfCl2(BTSA)2 
45. The authors of the HfCl2(BTSA)2 + H2O ALD process suggested that 

the decrease in GPC at higher temperatures is due to surface dehydroxylation, which 

diminishes the adsorption of the metal precursor.45 In the case of the tin oxide process, it 

was suggested that the decreasing GPC at higher deposition temperatures is due to 

reactions between protonated BTSA ligands that form as byproducts, and surface 

hydroxyl groups.39 In this mechanism, the protonated BTSA ligand undergoes bond 

rearrangement which results in formation of ammonia and unreactive surface O–SiMe3 

groups that inhibit further film growth. The amount of silicon impurities in the SnO films 
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was reported to increase with increasing deposition temperature which can also point out 

to that the metal precursor is undergoing partial decomposition. 

Film growth was found to saturate at deposition temperatures of 100 and 200 °C 

using precursor pulses of identical lengths, i.e. 1.5 s pulses for the cobalt precursor (Fig. 

3a) and 2.0 s pulses for water (Fig. 3b). At 100 °C, purge times of up to 8 s were required 

to produce visually uniform films over the 5×5 cm2 substrates whereas at the deposition 

temperature of 200 °C, purge times of 2 s were sufficient. The requirement for long purge 

times is a well-known in low-temperature thermal ALD, especially when water is used as 

a co-reactant.55 The phenomenon is attributed to the low vapor pressure of water and also 

its tendency to adsorb to both on the film surface and to the walls of the reaction 

chamber.18 

 

FIG. 3. Effect of pulse lengths of a) Co(BTSA)2(THF) and b) H2O of GPC of the cobalt 

oxide films deposited at 100 and 200 °C. Purge times were 8 s at 100 °C and 2 s at 200 

°C for both precursors. The dashed lines connecting the data points are to guide the 

reader’s eye. 
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The dependence between the number of deposition cycles and film thickness was 

also studied at deposition temperatures of 100 and 200 °C. At these deposition 

temperatures, thicknesses of the cobalt oxide films were found to be linearly dependent 

on the number of applied deposition cycles (Fig. 4). No major nucleation delay effect was 

present at either 100 or 200 °C, as expected for oxide on oxide growth.18 

 

FIG. 4. Relationship between film thickness and number of deposition cycles at 100 and 

200 °C The GPC values have been calculated from linear fits of the data points (solid 

lines). The R2 values describing the goodness of the fits are 0.99431 and 0.99789 for 

deposition temperatures of 100 and 200 °C, respectively. 

 

C. Film characterization 

 

X-ray diffraction measurements of cobalt oxide films were performed in the 

grazing incidence (GI) geometry. The GI-XRD measurements revealed that the films 

crystallize as a mixture of the cubic rock salt and hexagonal wurtzite polymorphs of 

cobalt monoxide (Fig. 5), which is characteristic to nanostructured CoO.32 The existence 

of the two different polymorphs in the same films complicates the phase analysis, as the 
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2θ diffraction angles of the (111) plane of the cubic rock salt phase of CoO at 37.0° and 

the (101) plane of the hexagonal wurtzite phase of CoO at 37.1° are not easily 

distinguished from each other due to peak broadening.  

 

 

FIG. 5. GI-XRD scans of 50 nm thick cobalt oxide films deposited at 75–250 °C. 

 

In addition to the peak broadening, all diffractions were of low intensity. We 

assign the peak broadening to originate from small crystallite size. The low intensity of 

the diffractions, on the other hand, may indicate that the films are not fully crystalline, 

but partially amorphous. Films deposited at 75 °C were characterized by a weak and 

broad reflection assignable to the (200) plane of the cubic rock salt phase and a more 

intensive reflection at 36.5° which can be assigned to either the (111) plane of the cubic 

rock salt structure or the (101) plane of the hexagonal wurtzite phase. For films deposited 

at 100 °C, a single reflection belonging to the (002) plane of the hexagonal phase was 

observed. The diffractograms of films deposited at 125–200 °C consisted of reflections 

assignable to the (100) and (002) planes of the hexagonal phase and a reflection at 2θ of 
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36.5°, which can be assigned either to the cubic rock salt phase or the hexagonal wurtzite 

phase. Based on the intensities of the reflections, the hexagonal phase of CoO is 

seemingly dominating over the cubic rock salt phase in films obtained at deposition 

temperatures of 100–200 °C. Films obtained at 250 °C were X-ray amorphous. The 

amorphous structure of the films deposited at the highest temperature studied in this work 

is most likely a consequence of increased Si impurity content, as discussed later in the 

text. 

The surface morphology of 50 nm thick films was studied using atomic force 

microscopy (AFM). A notable difference in the surface morphology and shape of the 

film-forming grains was observed between the films deposited at 75 °C and those 

obtained at 100–250 °C (Fig. 6). 

 

FIG 6. AFM images and Rq values describing the surface roughness of 50 nm thick films 

deposited at 75–250 °C. The 1 µm scalebar and the height scale apply to all images. 
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Cobalt oxide films deposited at 75 °C consisted of larger grains and were 

significantly rougher than those deposited at above 100 °C. The average root-mean-

square roughness (Rq) of films deposited at 75 °C was 6.6 nm, which corresponds to 

approximately 14 % of the film thickness. A conceivable explanation for the high surface 

roughness observed at for films deposited at 75 °C is that the nucleation density at this 

temperature is low. This can enable the initial nuclei to grow large before coming to 

contact with each other, which can cause the surface roughness to increase. At 75 °C, the 

average grain diameter was 50–120 nm, whereas at deposition temperatures of 100 °C 

and above, the films consisted of grains approximately 30–60 nm in diameter. In general, 

films deposited at 100–250 °C were smooth with average root-mean-square surface 

roughness (Rq) ranging from 1.6 to 3.8 nm, which corresponds to approximately 2–6 % 

of the film thickness. The low surface roughness of films deposited at 100 °C and above 

also indicates that the films are partially amorphous. 

The chemical composition of the cobalt oxide films was studied using a 

combination of ToF-ERDA and XPS. ToF-ERDA is an ion-beam technique that can be 

used to accurately determine the elemental composition of thin films and other 

structures.53,56 Importantly, ToF-ERDA can be used to quantify also light elements, 

including hydrogen. Elemental compositions of the cobalt oxide films deposited at 75–

250 °C as determined using ToF-ERDA are presented in Table 1. High resolution 

photoelectron spectra of the Co 2p and O 1s regions of the cobalt oxide films deposited at 

100 and 200 °C are presented in Fig. 7. The main impurity element found in films 

deposited at all temperatures was hydrogen at approximately 12–19 at-% (Table 1). Other 

impurities in the films were carbon and silicon, which are both present in the BTSA 
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ligand. According to the ERDA depth profiles, the distribution of the impurities is even 

throughout the films. Nitrogen impurities were not present or were below the detection 

limit of < 0.2 at-%. The amount of carbon was approximately 2 at-% in all films, while 

the Si impurity content increased with increasing deposition temperature, ranging from 

1.8 at-% at 75 °C up to 6.4 at-% at 250 °C. 

 

TABLE I. Film composition (atomic-%) for 50 nm thick films deposited at 75–250 °C as 

determined by using ToF-ERDA. 

Tdep (
oC) 75 100 125 150 200 250 

Co 37.6 ± 0.4 38.3 ± 0.4 34.5  ± 0.3 34.0 ± 0.3 33.6 ± 0.4 32.5± 0.4 

O 46.7 ± 0.5 41.9 ± 0.8 44.0 ± 0.5 41.3 ± 0.7 46.0 ± 0.8 46.7 ± 0.9 

C 1.9 ± 0.1 2.1 ± 0.1 2.3 ± 0.1 2.6 ± 0.1 2.1 ± 0.1 2.1 ± 0.2 

H 12.1 ± 0.5 15.2 ± 1.5 16.7 ± 0.6 18.7 ± 1.3 13.0 ± 1.4 12.3 ± 1.4 

Si 1.8 ± 0.1 2.2 ± 0.1 2.5  ± 0.1 3.3 ± 0.1 5.4 ± 0.2 6.4  ± 0.3 

Co:O  0.81 0.91 0.78 0.82 0.73 0.70 

Si:C 0.95 1.1 1.1 1.3 2.6 3.1 

 

The data from the XPS measurements were analyzed using the peak fitting 

parameters published by Biesinger and coworkers.17 The photoelectron spectra in the Co 

2p3/2 region consisted of two peaks found at 780.7±0.1 and 786.4±0.1 eV, which indicates 

that the primary oxidation state of cobalt in the films is +2 (Fig. 7a). The binding energy 

value of 780.7±0.1 eV can be assigned to three different species, namely CoO and 

Co(OH)2 in which the oxidation state of cobalt is +2, or CoOOH (Co3+), but the existence 

of the strong satellite signal at 786.4±0.1 eV confirms that the oxidation state of cobalt in 

the films is +2.17 The more intensive peak in the Co 2p region found at 780.7±0.1 eV 
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shows asymmetry, which we assign to originate from coexistence of CoO and Co(OH)2 

in the films. 

 

 

FIG 7. High resolution photoelectron spectra of a) Co 2p and b) O 1s regions for films 

deposited at 100 and 200 °C. 

 

The O 1s spectra consisted of two peaks found at 529.7±0.1 eV and 531.5±0.1 eV 

(Fig. 7b.) The peak at the smaller binding energy value, 529.7±0.1 eV, is in good 

agreement with the literature reference value for the lattice oxide (O2–) of cobalt 

monoxide (529.79 eV).17 The peak at the higher binding energy value, 531.5±0.1 eV, is 

commonly assigned to surface hydroxide (OH–), hydrated oxide or defective oxide 

species. As the peak found at 531.5±0.1 eV corresponds to the literature reference value 
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of CoO (531.37 eV) 17, it can be concluded that the primary oxidation state of cobalt in 

the films is +2 and that cobalt is not oxidized during the film deposition process. 

By combining the information obtained with ToF-ERDA and XPS, we draw the 

following conclusions on the surface chemistry of the cobalt oxide films and the cobalt 

precursor, Co(BTSA)2(THF). As the amount of Si in the films is increasing with 

increasing deposition temperature, it is clear that Co(BTSA)2(THF) is not an ideal ALD 

precursor for cobalt oxide deposition in the sense that the level of impurity atoms has a 

dependence on deposition temperature. As no nitrogen was detected in the films but 

silicon was, the Si–N bonds in the BTSA ligands must break and volatile, nitrogen 

containing byproducts, such as ammonia or its derivatives, are likely to form. 

Furthermore, as the Si:C ratio is < 1 in films obtained at all deposition temperatures, the 

Si–C bonds in the BTSA ligands must also break to a certain degree. Therefore, it is 

plausible that Si exists in the films as –SiMex (Me = methyl, x = 1–3) moieties or 

silicates. As methyl groups are chemically stable, the hydrogen present in the films is 

likely to originate from two different chemical species, methyl groups and Co(OH)2. The 

existence of both Co(OH)2 and – SiMex groups in the films decreases the Co:O ratio to < 

1, as seen from Table 1. For Co(OH)2, the Co:O ratio is 1:2. As for the –SiMex groups, 

they remain in the films because of the strong chemical bond formed between silicon and 

oxygen atoms and thereby decrease the Co:O ratio in the films.57 It should be noted that a 

Co:O ratio < 1 can also indicate to the formation of the mixed valence cobalt oxide, 

Co3O4 (Co:O = 0.75), but this can be ruled out as the XPS analysis shows that the 

oxidation state of cobalt in the films is +2. Furthermore, concerning the incorporation of  

any methyl containing groups in the films, we note that these species are likely to 
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decrease the adsorption density of both the cobalt precursor and water molecules, which 

in turn leads to a decrease in the GPC of the process. Another possible factor affecting 

the GPC is the change in the area density of surface hydroxyl groups, as hydroxyls 

function as adsorption sites for the cobalt precursor. The thermal decomposition of 

Co(OH)2 and Co–OH surface groups to CoO has been reported to occur already at 

temperatures of 130–180 °C and to increase with increasing temperature.1,58 From Table 

1, it can be seen that the amount of hydrogen in the films starts to decrease after 150 °C. 

Therefore, it is plausible that the decrease in GPC with increasing deposition 

temperatures is related to decomposition of surface hydroxyls. However, as discussed 

earlier, the incorporation of methyl surface groups is most likely contributing to the drop 

in GPC as well. 

 

D. In-situ reaction mechanism studies 

 

 The in-situ reaction measurement studies were performed at 100 °C with the 

following precursor pulsing scheme: 10 D2O reference pulses + 10 Co(BTSA)2(THF) / 

D2O cycles + 10 Co(BTSA)2(THF) reference pulses. The use of reference pulses has a 

two-fold informative purpose. A background correction is needed in the reaction by-

product analysis: if a measured QMS m/z signal is present during both the reference 

pulses and the process cycles, the amount of reaction by-product released in a surface 

reaction is equal to the integrated signal of the precursor pulse during a process cycle 

minus the integrated signal of the reference pulse. Furthermore, if a QCM measurement 
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shows an indefinite growth of mass during reference pulses, it is an indication of either 

physisorption or decomposition of the precursor. 

The most likely primary film-forming reaction mechanism in an ALD metal oxide 

process using water as the oxygen source is 1) a ligand exchange reaction between the 

metal precursor and surface hydroxyl (–OD) groups, followed by 2) a subsequent ligand 

exchange between water and the surface groups formed in 1), and the consequent 

deposition of CoO. In the case of cobalt oxide deposition using Co(BTSA)2(THF) and 

D2O, this is represented by net reaction scheme (1). The THF ligand has been omitted 

from the following notation for clarity. 

Net reaction: 

Co(BTSA)2 (g) + D2O (g) → CoO (s) + 2 D(BTSA) (g) (1) 

 

The first half-reaction during the Co(BTSA)2(THF) pulse (0 < x < 2) is: 

x –OD (s) + Co(BTSA)2 (g) → –Ox–Co(BTSA)2–x (s) + x D(BTSA) (g) (2) 

 

The second half-reaction during the D2O pulse is: 

–Ox–Co(BTSA)2–x (s) + D2O (g) → x –OD (s) + CoO (s) + (2 – x) D(BTSA) (g)

 (3) 

 

The compositional analysis results show a significant amount of hydrogen in the 

films (Table 1). This could be explained by a secondary reaction mechanism, which is a 

ligand exchange that deposits cobalt(II)hydroxide: 

Net reaction: 

Co(BTSA)2 (g) + 2 D2O (g) → Co(OD)2 (s) + 2 D(BTSA) (g) (4) 
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First half-reaction (0 < y < 2): 

y –OD (s) + Co(BTSA)2 (g) → –Oy–Co(BTSA)2–y (s) + y D(BTSA) (g) (5) 

 

Second half-reaction (0 < y < 2): 

–Oy–Co(BTSA)2–y (s) + 2 D2O (g) → y –OD  (s) + Co(OD)2 (s) + (2 – y) 

D(BTSA) (g) (6) 

 

The above half-reaction can be a direct formation of Co(OD)2 or the deposition of CoO, 

i.e. the second half-reaction (6), and a subsequent hydrolysis: 

CoO (s) + D2O (g) → Co(OD)2 (s) (7) 

 

When taking in to account the reaction schemes that deposit CoO and Co(OH)2 i.e. net 

reactions (1) and (4), we get the following combined scheme, where the final product is a 

combination of CoO and Co(OD)2: 

Net reaction (0 < n < 1): 

Co(BTSA)2 (g) + (2 – n) D2O (g) → CoOn(OD)2–2n (s) + 2 D(BTSA) (g) (8) 

 

First half-reaction (0 < z < 1): 

z –OD (s) + Co(BTSA)2 (g) → –Oz–Co(BTSA)2–z (s) + z D(BTSA) (g) (9) 

 

Second half-reaction: 

–Oz–Co(BTSA)2–z (s) + (2 – n) D2O (g) → z –OD (s) + CoOn(OD)2–2n (s) + (2 – z) 

D(BTSA) (g) (10) 

 

An important similarity between the Eqs. (1), (4) and (8) is that the interpretation 

of the QMS data in these reaction schemes is the same. This follows from the fact that we 

only measure the ratio of D(BTSA) released during the metal precursor pulse versus 

D(BTSA) released during the water pulse, and this ratio is the same in all the schemes 

(i.e. QMS cannot differentiate between the unknown stoichiometric coefficients x, y, and 
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z). In analyzing the measurement data, we interpret the results in terms of Eq. (10), i.e. 

we calculate a value for z.  

The m/z values monitored during the in-situ reaction mechanism studies are listed 

in Table II. The m/z ratios of interest regarding the film deposition reaction mechanism 

are those belonging to THF+ (m/z = 72) and most intense peak of the deutered BTSA 

ligand, D(BTSA) (m/z = 147). 

 

TABLE 2. m/z values of reaction by-products monitored using QMS. 

m/z species observed notes 

20 D3N
+ no molecular peak 

72 C4H8O
+ (THF+) yes molecular peak 

75 DSi(CH3)3
+ no molecular peak 

91 DOSi(CH3)3
+, D2NSi(CH3)3

+ no molecular peak(s) 

132 (H3C)3Si–Si(CH3)3
+ yes molecular peak 

146 DN[Si(CH3)2]2
+, O[Si(CH3)2]2

+ no fragment(s) 

147 DN[Si(CH3)3][Si(CH3)2]
+ yes most intense peak of D(BTSA) 

162 DN[Si(CH3)3]2
+, O[Si(CH3)3]2

+ yes molecular peaks(s) 

233 N[Si(CH3)3]3
+ no molecular peak 

 

Based on the QMS measurements, the THF ligand does not have a notable effect 

on the reaction mechanism. In the signal arising from THF, almost no difference is seen 

in the integrated signal intensities during the process pulses and the reference pulses (Fig. 

8). This could be due to THF being separated from the parent molecule before reaching 

the surface, or a complete release of THF from the cobalt precursor upon adsorption on 

the surface, as THF signals are seen only during the Co(BTSA)2(THF) pulses, and not 
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during the D2O pulses. We note that Co(BTSA)2(THF) can be purified via sublimation, 

during which the molecule evaporates intact as discussed in the precursor synthesis 

section. This indicates that during film deposition, THF is released from the parent cobalt 

precursor molecule only during the surface reactions. The passive role of THF is not 

surprising, as it is only an adduct forming ligand in the cobalt precursor. Because it has 

zero charge, it can simply dissociate from the cobalt precursor without any reaction with 

e.g. hydroxyl groups. Furthermore, THF is only a weak Lewis base, which makes it 

unlikely to adsorb on the surface at temperatures in which the film deposition and in-situ 

experiments are done. For these reasons, THF has not been included in calculations 

which are based on the QMS and QCM data. 

 

FIG 8. QMS data for m/z = 72 (THF+) and m/z = 147 (DN[Si(CH3)][Si(CH3)2])
+ at 100 

°C. 

In analyzing the QMS data, we integrate the signal intensities arising from 

D(BTSA) during the Co(BTSA)2(THF) pulse and D2O pulse, as these intensities are 

proportional to the amount of D(BTSA) released during the said pulses. From these 

integrated values, we subtract the integrated values of the same signals observed during 



 26 

the respective reference pulses. We do not need to analyze the absolute values of the 

mass signals, as we are only interested in their ratio (≡R), referring to equations (9) and 

(10): 

R = z / (2 – z) (11) 

 

Using a measured value of R, we can calculate z: 

z = 2R / (1 + R) (12) 

 

The most notable aspect of the QMS data is that in all the experiments the great 

majority of D(BTSA) (m/z = 147) is released during the Co(BTSA)2(THF) pulse. 

Calculating R from the data presented in Figs. 8 and 9 using numerical integration, we 

obtain z ≈ 1.90. In fact, when the purge time after the Co(BTSA)2(THF) pulse is made 

long enough, only a weak signal from D(BTSA) can be observed in the mass spectrum 

during the D2O pulse (Fig. 9). 

 

FIG 9. QMS data for m/z = 147 (DN[Si(CH3)][Si(CH3)2])
+ at 100 °C for two cycles of the 

Co(BTSA)2(THF) + D2O process. 
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A complicating factor in the analysis of gaseous by-products are the following 

possible side-reactions between the released D(BTSA) and surface hydroxyl groups59, 

which create surface methylsilyl groups: 

–OD (s) + DN[Si(CH3)3]2 (g) → –O–Si(CH3)3 (s) + D2NSi(CH3)3 (g) (13) 

 

–OD (s) + D2NSi(CH3)3 (g) → –O–Si(CH3)3 (s) + D3N (g) (14) 

 

If such methylsilyl groups were created, they could in principle be transformed to 

methylsilazane groups by the cobalt precursor, or back to hydroxyl groups by the 

following water pulse: 

2 –O–Si(CH3)3 (s) + Co{N[Si(CH3)3]2}2 (g) → (–O)2Co (s) + N[Si(CH3)3]3 (g)

 (15) 

 

–O–Si(CH3)3 (s) + D2O (g) → –OD (s) + DOSi(CH3)3 (g) (16) 

 

On the other hand, if the formation of surface methylsilyl groups was irreversible, 

they would provide some explanation for the silicon and carbon impurities seen in the 

films. However, the gaseous by-products from reactions (13–16) were not detected with 

QMS. If the proportion of such reactions relative to all the other reactions is small, the 

released by-products might not be detectable due to instrumental limitations. At any rate, 

a partial decomposition or condensation of the cobalt precursor seems to be a better 

explanation for the observed silicon and carbon impurities in the films, the latter being a 

more feasible explanation due to the low deposition temperature. 

In addition to the QMS measurements, the cobalt oxide film deposition process 

was also studied using QCM, as it provides an independent mean to obtain an 

experimental value for z. In these measurements, the mass changes during the reference 
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pulses of both D2O and Co(BTSA)2(THF) are of interest. During the D2O reference 

pulses the mass increases in relatively large amounts, and then decreases during the 

following purge (Fig. 10). 

 

 

FIG 10. QCM data for the Co(BTSA)2(THF) + D2O process at 100°C. 

 

This effect could be due to simple physisorption/chemisorption and subsequent 

desorption, or due to hydroxylation (17) and subsequent dehydroxylation (18) of the 

underlying cobalt oxide: 

CoO (s) + D2O (g) → Co(OD)2 (s) (17) 

 

Co(OD)2 (s) → CoO (s) + D2O (g) (18) 

 

During the Co(BTSA)2(THF) reference pulses the mass seems to change non-

reversibly during each pulse. This could be due to physisorption or chemisorption with 

very slow desorption, or a very slowly saturation of Co(BTSA)2(THF) to the bulk of the 
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films. More likely explanations could be either a decomposition or a condensation of the 

precursor itself, or a very slow depletion of the surface –OD groups. As already stated 

earlier, condensation is much more likely than decomposition due to the low deposition 

temperature. Similar behavior has been observed in the in-situ QCM studies on the 

LiBTSA/O3 ALD process.35 However, as in the case of the LiBTSA + O3 process study,34 

saturation tests based on thickness measurements seemed to indicate very good self-

limiting behavior also in the case of the process reported herein. In the ALD process 

itself, the mass increases sharply at the very beginning of the Co(BTSA)2(THF) pulses, 

with a slower, albeit significant, increase rate afterwards (Fig. 11).  

 

FIG 11. QCM data for the Co(BTSA)2(THF) + D2O process at 100°C. 

 

During the following purge, the mass decreases approximately to a level which 

corresponds to the onset of the lower rate mass increase during the previous pulse. The 

mass increase does not seem to saturate even when using long pulses. Again, part of this 

effect can be due to condensation of the cobalt precursor. However, because the mass 
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also decreases during the following purge, there also seems to be some reversible 

physisorption of the precursor involved. During the ALD process, at the onset of the D2O 

pulse the mass increases sharply, after which it saturates fairly quickly. During the 

following purge, an effect similar to the one seen during the D2O reference pulses can be 

observed, as the mass decreases and approximately saturates again to a lower level. 

The mass increase during the metal precursor pulse (≡ m1) equals the mass of the 

precursor vapor adsorbed on the surface minus the mass of gaseous by-products released: 

m1 = m(Co(BTSA)2) – z m(D(BTSA)) (19) 

 

The mass increase after one whole ALD cycle (≡ m0) equals the mass of all gases 

adsorbed during the whole cycle minus the total mass of gaseous by-products released. 

More simply, this is equal to the mass of the deposited film: 

m0 = m(Co(BTSA)2) – 2 m(D(BTSA)) = m(CoOn(OD)2–2n) (20) 

 

Similarly to the analysis of the QMS data, we do not need the absolute values of 

the mass increases, but instead the ratio of m1 to m0: 

m1/m0 = [m(Co(BTSA)2) – z m(D(BTSA))] / m(CoOn(OD)2–2n) (21) 

 

Using the measured value of m1/m0, we can calculate z: 

z = [m(Co(BTSA)2) – (m1/m0) m(CoOn(OD)2–2n)] / m(D(BTSA)) (22) 

 

Because the value of n in equation (22) is unknown, we calculate the extremum 

values of z for 0 < n < 1, i.e. for the range of all possible n according to the scheme 

presented in Eqs. (8)–(10). From Fig. 11 we obtain an m1/m0 value of approximately 0.80, 

which corresponds to the following values for z: 
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z(n = 0) = [m(Co(BTSA)2) – (m1/m0) m(Co(OD)2)] / m(D(BTSA)) ≈1.86 

 

z(n = 1) = [m(Co(BTSA)2) – (m1/m0) m(CoO)] / m(D(BTSA)) ≈ 1.96 

 

Both of these values are in good agreement with the value for z obtained using 

QMS and therefore, the QCM data can not give a definitive answer on how much of the 

mechanism involves the formation of pure cobalt(II) oxide as compared to cobalt(II) 

hydroxide. 

To sum up the in-situ studies, the experimentally found value for z is close to 2, 

which suggests that the primary film-forming reaction mechanism at 100 °C is a reaction 

between one Co(BTSA)2(THF) molecule between two surface hydroxyl (–OD) groups 

and the subsequent release of two equivalents of  D(BTSA). During the following D2O 

pulse, one D2O molecule reacts with the surface group that forms after the cobalt 

precursor pulse which leads to the formation of two new surface hydroxyl groups (Fig. 

12). It is fairly exceptional that almost all of the ligands on average are released already 

during the metal pulse. This would indicate that the Co(BTSA)2(THF) or the Co(BTSA)2 

molecule cannot strongly adsorb on the surface unless it loses hydrogenated BTSA 

ligands in reaction with hydroxyl groups. 
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FIG. 12. Proposed reaction mechanism scheme for cobalt oxide film deposition for the 

Co(BTSA)2(THF) + D2O process at 100 °C. The THF molecule of Co(BTSA)2(THF) has 

been omitted for clarity. 

 

IV. SUMMARY AND CONCLUSIONS 

 

In this study, we have described a new, low-temperature ALD process for cobalt 

oxide thin films using Co(BTSA)2(THF) and H2O as precursors. The adduct forming 

THF ligand in the precursor molecule was found to have a passive role in the deposition 

process while at the same time, the inclusion of the adduct forming ligand enabled the 

cobalt precursor to be evaporated at a low temperature of 55 °C. The deposition process 

exhibited good saturation behavior at deposition temperatures of 100 and 200 °C and 

produced visually uniform films on 5×5 cm2 substrates. Film characterization showed 

that films deposited at low temperatures were more crystalline than the ones deposited at 

high temperatures, which is likely due to the increase of Si impurities at the higher 

temperatures. In addition to the decreased crystallinity, the incorporation of Si atoms 

from the BTSA ligands is also likely be detrimental with respect to applications where 

stoichiometric and impurity-free cobalt monoxide is required. An in-situ QMS and QCM 
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study revealed that the most probable film-forming reaction mechanism at 100 °C is an 

exchange reaction between surface BTSA ligands and water, which produces volatile, 

hydrogenated BTSA as the main reaction by-product. The QCM measurements show also 

mass growth behavior which may imply partial condensation of the cobalt precursor. 

Regarding future studies, there is more research to be done on metal BTSA precursors, as 

they are relatively cheap and easy to synthesize. However, it should be emphasized that 

this family of metal precursors might lack some of the other characteristics of ideal ALD 

precursors, as they seem to be prone to condensation at low temperatures and partial 

thermal decomposition at higher temperatures. 
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