1,390 research outputs found

    Out-of-plane nesting driven spin spiral in ultrathin Fe/Cu(001) films

    Full text link
    Epitaxial ultrathin Fe films on fcc Cu(001) exhibit a spin spiral (SS), in contrast to the ferromagnetism of bulk bcc Fe. We study the in-plane and out-of-plane Fermi surfaces (FSs) of the SS in 8 monolayer Fe/Cu(001) films using energy dependent soft x-ray momentum-resolved photoemission spectroscopy. We show that the SS originates in nested regions confined to out-of-plane FSs, which are drastically modified compared to in-plane FSs. From precise reciprocal space maps in successive zones, we obtain the associated real space compressive strain of 1.5+-0.5% along c-axis. An autocorrelation analysis quantifies the incommensurate ordering vector q=(2pi/a)(0,0,~0.86), favoring a SS and consistent with magneto-optic Kerr effect experiments. The results reveal the importance of in-plane and out-of-plane FS mapping for ultrathin films.Comment: 4 pages, 3 figure

    Randomized Controlled Trial of the Effectiveness of Genetic Counseling and a Distance, Computer-Based, Lifestyle Intervention Program for Adult Offspring of Patients with Type 2 Diabetes: Background, Study Protocol, and Baseline Patient Characteristics

    Get PDF
    Relatives of type 2 diabetic patients are at a high risk of developing type 2 diabetes and should be regarded as target of intervention for diabetes prevention. However, it is usually hard to motivate them to implement preventive lifestyle changes, because of lack of opportunity to take advises from medical professionals, inadequate risk perception, and low priority for preventive behavior. Prevention strategy for them therefore should be highly acceptable and suited for them. The parallel, three-group trial is now being conducted to investigate the effects of genetic counseling and/or a computerized behavioral program on the prevention of type 2 diabetes in that population. The preventive strategies used in this study could provide a novel solution to the numbers of genetically high-risk individuals, if found to be effective. The objective of this paper is to describe the background, protocol, and baseline patient characteristics of the trial

    Suzaku Observation of Two Ultraluminous X-Ray Sources in NGC 1313

    Full text link
    Two ultraluminous X-ray sources (ULXs) in the nearby Sb galaxy NGC 1313, named X-1 and X-2, were observed with Suzaku on 2005 September 15. During the observation for a net exposure of 28~ks (but over a gross time span of 90~ks), both objects varied in intensity by about 50~%. The 0.4--10 keV X-ray luminosity of X-1 and X-2 was measured as 2.5×1040 erg s12.5 \times 10^{40}~{\rm erg~s^{-1}} and 5.8×1039 erg s15.8 \times 10^{39}~{\rm erg~s^{-1}}, respectively, with the former the highest ever reported for this ULX. The spectrum of X-1 can be explained by a sum of a strong and variable power-law component with a high energy cutoff, and a stable multicolor blackbody with an innermost disk temperature of 0.2\sim 0.2 keV. These results suggest that X-1 was in a ``very high'' state, where the disk emission is strongly Comptonized. The absorber within NGC 1313 toward X-1 is suggested to have a subsolar oxygen abundance. The spectrum of X-2 is best represented, in its fainter phase, by a multicolor blackbody model with the innermost disk temperature of 1.2--1.3 keV, and becomes flatter as the source becomes brighter. Hence X-2 is interpreted to be in a slim-disk state. These results suggest that the two ULXs have black hole masses of a few tens to a few hundreds solar masses.Comment: accepted for publication in PAS

    X-ray reflection in a sample of X-ray bright Ultraluminous X-ray sources

    Full text link
    We apply a reflection-based model to the best available XMM-Newton spectra of X-ray bright UltraLuminous X-ray (ULX) sources (NGC 1313 X-1, NGC 1313 X-2, M 81 X-6, Holmberg IX X-1, NGC 5408 X-1 and Holmberg II X-1). A spectral drop is apparent in the data of all the sources at energies 6-7 keV. The drop is interpreted here in terms of relativistically-blurred ionized reflection from the accretion disk. A soft-excess is also detected from these sources (as usually found in the spectra of AGN), with emission from O K and Fe L, in the case of NGC 5408 X-1 and Holmberg II X-1, which can be understood as features arising from reflection of the disk. Remarkably, ionized disk reflection and the associated powerlaw continuum provide a good description of the broad-band spectrum, including the soft-excess. There is no requirement for thermal emission from the inner disk in the description of the spectra. The black holes of these systems must then be highly spinning, with a spin close to the maximum rate of a maximal spinning black hole. The results require the action of strong light bending in these sources. We suggest that they could be strongly accreting black holes in which most of the energy is extracted from the flow magnetically and released above the disc thereby avoiding the conventional Eddington limit.Comment: Accepted for publication in MNRA

    Assessing Patient Experience and Orientation in the Emergency Department with Virtual Windows

    Get PDF
    Patients have benefitted from increasingly sophisticated diagnostic and therapeutic innovations over the years. However, the design of the physical hospital environment has garnered less attention. This may negatively impact a patient’s experience and health. In areas of the hospital, such as the emergency department (ED), patients may spend hours, or even days, in a windowless environment. Studies have highlighted the importance of natural light and imagery, as they are essential in providing important stimuli to regulate circadian rhythm and orientation, and to mitigate the onset of certain medical conditions. In hospital locations where standard windows may be infeasible, the use of a virtual window may simulate the benefits of an actual window. In this pilot study, we assessed patient experience and orientation with virtual windows in the ED. We demonstrated that virtual windows are an acceptable technology that may improve patient experience and orientation

    Linear approaches to intramolecular Förster Resonance Energy Transfer probe measurements for quantitative modeling

    Get PDF
    Numerous unimolecular, genetically-encoded Forster Resonance Energy Transfer (FRET) probes for monitoring biochemical activities in live cells have been developed over the past decade. As these probes allow for collection of high frequency, spatially resolved data on signaling events in live cells and tissues, they are an attractive technology for obtaining data to develop quantitative, mathematical models of spatiotemporal signaling dynamics. However, to be useful for such purposes the observed FRET from such probes should be related to a biological quantity of interest through a defined mathematical relationship, which is straightforward when this relationship is linear, and can be difficult otherwise. First, we show that only in rare circumstances is the observed FRET linearly proportional to a biochemical activity. Therefore in most cases FRET measurements should only be compared either to explicitly modeled probes or to concentrations of products of the biochemical activity, but not to activities themselves. Importantly, we find that FRET measured by standard intensity-based, ratiometric methods is inherently non-linear with respect to the fraction of probes undergoing FRET. Alternatively, we find that quantifying FRET either via (1) fluorescence lifetime imaging (FLIM) or (2) ratiometric methods where the donor emission intensity is divided by the directly-excited acceptor emission intensity (denoted R<sub>alt</sub>) is linear with respect to the fraction of probes undergoing FRET. This linearity property allows one to calculate the fraction of active probes based on the FRET measurement. Thus, our results suggest that either FLIM or ratiometric methods based on R<sub>alt</sub> are the preferred techniques for obtaining quantitative data from FRET probe experiments for mathematical modeling purpose

    Status of GRB Observations with the Suzaku Wideband All-sky Monitor

    Get PDF
    The Wide-band All-sky Monitor (WAM) is a function of the large lateral BGO shield of the Hard X-ray Detector (HXD) onboard Suzaku. Its large geometrical area of 800 cm^2 per side, the large stopping power for the hard X-rays and the wide-field of view make the WAM an ideal detector for gamma-ray bursts (GRBs) observations in the energy range of 50-5000 keV. In fact, the WAM has observed 288 GRBs confirmed by other satellites, till the end of May 2007.Comment: 4 pages, 4 figures, to be published in the proceedings of ''Gamma Ray Bursts 2007'', Santa Fe, New Mexico, November 5-

    Majorana edge modes of superfluid 3He A-phase in a slab

    Full text link
    Motivated by a recent experiment on the superfluid 3He A-phase with a chiral p-wave pairing confined in a thin slab, we propose designing a concrete experimental setup for observing the Majorana edge modes that appear around the circumference edge region. We solve the quasi-classical Eilenberger equation, which is quantitatively reliable, to evaluate several observables. To derive the property inherent to the Majorana edge state, the full quantum mechanical Bogoliubov-de Gennes equation is solved in this setting. On the basis of the results obtained, we perform decisive experiments to check the Majorana nature.Comment: 5 pages, 5 figure

    Nomenclature of the gadolinite supergroup

    Get PDF
    The newly defined gadolinite supergroup approved by the IMA CNMNC (vote 16-A) includes mineral species that have the general chemical formula A2MQ2T2O8\u20192 and belong to silicates, phosphates and arsenates. Each site is occupied by: A Ca, REE (Y and lanthanoids), actinoids, Pb, Mn2\ufe, Bi; M Fe, \u25a1 (vacancy), Mg, Mn, Zn, Cu, Al; Q B, Be, Li; T Si, P, As, B, Be, S; and\u2019 O, OH, F. The classification of the gadolinite supergroup is based on the occupancy of A, M, Q, T and\u2019 sites and application of the dominant-valency and dominant-constituent rules. The gadolinite supergroup is divided into two groups defined by prevailing charge occupancy at the T site Si4\ufe in gadolinite group and P5\ufe or As5\ufe in herderite group. The gadolinite group is divided into the gadolinite and datolite subgroups. The A site is dominantly occupied by divalent cations in the datolite subgroup and by trivalent cations in the gadolinite subgroup. Accordingly, the Q site is dominantly occupied by B3\ufe in the datolite subgroup and by Be2\ufe in the gadolinite subgroup. The herderite group is divided into two subgroups. The herderite subgroup is defined by the dominant divalent cation (usually Ca2\ufe) in the A site and Be2\ufe in the Q site, while the M site is vacant. The drugmanite subgroup is defined by the dominance of divalent cations (usually Pb2\ufe) in the A site, vacancy in the Q site and the occupation of the M site. Moreover, \u201cbakerite\u201d is discredited as mineral species because it does not meet the conditions of the dominant-constituent rule
    corecore