455 research outputs found

    Hubble Space Telescope Imaging in the Chandra Deep Field South: III. Quantitative Morphology of the 1Ms Chandra Counterparts and Comparison with the Field Population

    Full text link
    We present quantitative morphological analyses of 37 HST/WFPC2 counterparts of X-ray sources in the 1 Ms Chandra Deep Field-South (CDFS). We investigate: 1) 1-D surface brightness profiles via isophotal ellipse fitting; 2) 2-D, PSF- convolved, bulge+disk+nucleus profile-fitting; 3) asymmetry and concentration indices compared with all ~3000 sources in our three WFPC2 fields; and 4) near- neighbor analyses comparing local environments of X-ray sources versus the field control sample. Significant nuclear point-source optical components appear in roughly half of the resolved HST/WFPC2 counterparts, showing a narrow range of F_X/F_{opt,nuc} consistent with the several HST-unresolved X-ray sources (putative type-1 AGN) in our fields. We infer roughly half of the HST/WFPC2 counterparts host unobscured AGN, which suggests no steep decline in the type-1/type-2 ratio out to the redshifts z~0.5-1 typical of our sources. The concentration indices of the CDFS counterparts are clearly larger on average than those of the field distribution, at 5-sigma, suggesting that the strong correlation between central black hole mass and host galaxy properties (including concentration index) observed in nearby galaxies is already evident by z~0.5-1. By contrast, the asymmetry index distribution of the 21 resolved CDFS sources at I<23 is indistinguishable from the I<23 field. Moreover, the frequency of I<23 near neighbors around the CDFS counterparts is not significantly different from the field sample. These results, combined with previous similar findings for local samples, suggest that recent merger/ interaction history is not a good indicator of AGN activity over a substantial range of look-back time.Comment: 30 pages, incl. 8 figures; accepted for publication in the Astrophysical Journa

    The Quasar-LBG Two-point Angular Cross-correlation Function at z ~ 4 in the COSMOS Field

    Get PDF
    In order to investigate the origin of quasars, we estimate the bias factor for low-luminosity quasars at high redshift for the first time. In this study, we use the two-point angular cross-correlation function (CCF) for both low-luminosity quasars at −24<M1450<−22-24<M_{\rm 1450}<-22 and Lyman-break galaxies (LBGs). Our sample consists of both 25 low-luminosity quasars (16 objects are spectroscopically confirmed low-luminosity quasars) in the redshift range 3.1<z<4.53.1<z<4.5 and 835 color-selected LBGs with zLBGâ€Č<25.0z^{\prime}_{\rm LBG}<25.0 at z∌4z\sim4 in the COSMOS field. We have made our analysis for the following two quasar samples; (1) the spectroscopic sample (the 16 quasars confirmed by spectroscopy), and (2) the total sample (the 25 quasars including 9 quasars with photometric redshifts). The bias factor for low-luminosity quasars at z∌4z\sim4 is derived by utilizing the quasar-LBG CCF and the LBG auto-correlation function. We then obtain the 86%86\% upper limits of the bias factors for low-luminosity quasars, that are 5.63 and 10.50 for the total and the spectroscopic samples, respectively. These bias factors correspond to the typical dark matter halo masses, log (MDM/(h−1M⊙))=(M_{\rm DM}/(h^{-1}M_{\odot}))=12.712.7 and 13.513.5, respectively. This result is not inconsistent with the predicted bias for quasars which is estimated by the major merger models.Comment: 13 pages, 9 figures, Accepted for publication in Ap

    Detailed Shape and Evolutionary Behavior of the X-ray Luminosity Function of Active Galactic Nuclei

    Get PDF
    We construct the rest-frame 2--10 keV intrinsic X-ray luminosity function of Active Galactic Nuclei (AGNs) from a combination of X-ray surveys from the all-sky Swift BAT survey to the Chandra Deep Field-South. We use ~3200 AGNs in our analysis, which covers six orders of magnitude in flux. The inclusion of the XMM and Chandra COSMOS data has allowed us to investigate the detailed behavior of the XLF and evolution. In deriving our XLF, we take into account realistic AGN spectrum templates, absorption corrections, and probability density distributions in photometric redshift. We present an analytical expression for the overall behavior of the XLF in terms of the luminosity-dependent density evolution, smoothed two power-law expressions in 11 redshift shells, three-segment power-law expression of the number density evolution in four luminosity classes, and binned XLF. We observe a sudden flattening of the low luminosity end slope of the XLF slope at z>~0.6. Detailed structures of the AGN downsizing have been also revealed, where the number density curves have two clear breaks at all luminosity classes above log LX>43. The two break structure is suggestive of two-phase AGN evolution, consisting of major merger triggering and secular processes.Comment: 39 Pages, 9 figures. ApJ in pres

    The incidence of obscuration in active galactic nuclei

    Get PDF
    We study the incidence of nuclear obscuration on a complete sample of 1310 AGN selected on the basis of their rest-frame 2-10 keV X-ray flux from the XMM-COSMOS survey, in the redshift range 0.3<z<3.5. We classify the AGN as obscured or un-obscured on the basis of either the optical spectral properties and the overall SED or the shape of the X-ray spectrum. The two classifications agree in about 70% of the objects, and the remaining 30% can be further subdivided into two distinct classes: at low luminosities X-ray un-obscured AGN do not always show signs of broad lines or blue/UV continuum emission in their optical spectra, most likely due to galaxy dilution effects; at high luminosities broad line AGN may have absorbed X-ray spectra, which hints at an increased incidence of small-scale (sub-parsec) dust-free obscuration. We confirm that the fraction of obscured AGN is a decreasing function of the intrinsic X-ray luminosity, while the incidence of absorption shows significant evolution only for the most luminous AGN, which appear to be more commonly obscured at higher redshift. We find no significant difference between the mean stellar masses and star formation rates of obscured and un-obscured AGN hosts. We conclude that the physical state of the medium responsible for obscuration in AGN is complex, and mainly determined by the radiation environment (nuclear luminosity) in a small region enclosed within the gravitational sphere of influence of the central black hole, but is largely insensitive to the wider scale galactic conditions.Comment: 18 pages, 17 figures, 2 tables. Accepted for publication by MNRA

    How Massive Single Stars End their Life

    Get PDF
    How massive stars die -- what sort of explosion and remnant each produces -- depends chiefly on the masses of their helium cores and hydrogen envelopes at death. For single stars, stellar winds are the only means of mass loss, and these are chiefly a function of the metallicity of the star. We discuss how metallicity, and a simplified prescription for its effect on mass loss, affects the evolution and final fate of massive stars. We map, as a function of mass and metallicity, where black holes and neutron stars are likely to form and where different types of supernovae are produced. Integrating over an initial mass function, we derive the relative populations as a function of metallicity. Provided single stars rotate rapidly enough at death, we speculate upon stellar populations that might produce gamma-ray bursts and jet-driven supernovae.Comment: 24 pages, 9 figues, submitted to Ap

    The Chandra Deep Field North Survey. IX. Extended X-ray Sources

    Full text link
    The ~1 Ms Chandra Deep Field North observation is used to study the extended X-ray sources in the region surrounding the Hubble Deep Field North (HDF-N), yielding the most sensitive probe of extended X-ray emission at cosmological distances to date. A total of six such sources are detected, the majority of which align with small numbers of optically bright galaxies. Their angular sizes, band ratios, and X-ray luminosities -- assuming they lie at the same distances as the galaxies coincident with the X-ray emission -- are generally consistent with the properties found for nearby groups of galaxies. One source is notably different and is likely to be a poor-to-moderate X-ray cluster at high redshift (i.e., z > 0.7). We are also able to place strong constraints on the optically detected cluster of galaxies ClG 1236+6215 at z=0.85 and the wide-angle-tail radio galaxy VLA J123725.7+621128 at z~1-2. With rest-frame 0.5--2.0 keV X-ray luminosities of <(3-15)e42 ergs s^{-1}, the environments of both sources are either likely to have a significant deficit of hot intra-cluster gas compared to local clusters of galaxies, or they are X-ray groups. We find the surface density of extended X-ray sources in this observation to be 167 (+97,-67) deg^{-2} at a limiting soft-band flux of approximately 3e-16 ergs s^{-1} cm^{-2}. No evolution in the X-ray luminosity function of clusters is needed to explain this value. (Abridged)Comment: 16 pages, 14 figures (8 color), LaTeX emulateapj5.sty, accepted for publication by the Astronomical Journal. Manuscript with full resolution embedded images available at http://www.astro.psu.edu/users/niel/hdf/hdf-chandra.htm

    The XMM-Newton wide-field survey in the COSMOS field. IV: X-ray spectral properties of Active Galactic Nuclei

    Get PDF
    We present a detailed spectral analysis of point-like X-ray sources in the XMM-COSMOS field. Our sample of 135 sources only includes those that have more than 100 net counts in the 0.3-10 keV energy band and have been identified through optical spectroscopy. The majority of the sources are well described by a simple power-law model with either no absorption (76%) or a significant intrinsic, absorbing column (20%).As expected, the distribution of intrinsic absorbing column densities is markedly different between AGN with or without broad optical emission lines. We find within our sample four Type-2 QSOs candidates (L_X > 10^44 erg/s, N_H > 10^22 cm^-2), with a spectral energy distribution well reproduced by a composite Seyfert-2 spectrum, that demonstrates the strength of the wide field XMM/COSMOS survey to detect these rare and underrepresented sources.Comment: 16 pages, ApJS COSMOS Special Issue, 2007 in press. The full-resolution version is available at http://www.mpe.mpg.de/XMMCosmos/PAPERS/mainieri_cosmos.ps.g

    On the occupation of X-ray selected galaxy groups by radio AGN since z=1.3

    Full text link
    Previous clustering analysis of low-power radio AGN has indicated that they preferentially live in massive groups. The X-ray surveys of the COSMOS field have achieved a sensitivity at which these groups are directly detected out to z=1.3. Making use of Chandra-, XMM- and VLA-COSMOS surveys we identify radio AGN members (10**23.6 < L_1.4GHz/(W/Hz) < 10**25) of galaxy groups (10**13.2 < M_200/M_sun < 10**14.4; 0.1<z<1.3) and study i) the radio AGN -- X-ray group occupation statistics as a function of group mass, and ii) the distribution of radio AGN within the groups. We find that radio AGN are preferentially associated with galaxies close to the center (< 0.2r_200). Compared to our control sample of group members matched in stellar mass and color to the radio AGN host galaxies, we find a significant enhancement of radio AGN activity associated with 10**13.6 < M_200/M_sun < 10**14 halos. We present the first direct measurement of the halo occupation distribution (HOD) for radio AGN, based on the total mass function of galaxy groups hosting radio AGN. Our results suggest a possible deviation from the usually assumed power law HOD model. We also find an overall increase of the fraction of radio AGN in galaxy groups (<1r_200), relative to that in all environments.Comment: 5 pages, 4 figures, accepted for publication in MNRAS Letter

    The FMOS-COSMOS survey of star-forming galaxies at z~1.6. IV: Excitation state and chemical enrichment of the interstellar medium

    Get PDF
    We investigate the physical conditions of ionized gas in high-z star-forming galaxies using diagnostic diagrams based on the rest-frame optical emission lines. The sample consists of 701 galaxies with an Ha detection at 1.4â‰Čzâ‰Č1.71.4\lesssim z\lesssim1.7, from the FMOS-COSMOS survey, that represent the normal star-forming population over the stellar mass range 109.6â‰ČM∗/M⊙â‰Č1011.610^{9.6} \lesssim M_\ast/M_\odot \lesssim 10^{11.6} with those at M∗>1011 M⊙M_\ast>10^{11}~M_\odot being well sampled. We confirm an offset of the average location of star-forming galaxies in the BPT diagram ([OIII]/Hb vs. [NII]/Ha), primarily towards higher [OIII]/Hb, compared with local galaxies. Based on the [SII] ratio, we measure an electron density (ne=220−130+170 cm−3n_e=220^{+170}_{-130}~\mathrm{cm^{-3}}), that is higher than that of local galaxies. Based on comparisons to theoretical models, we argue that changes in emission-line ratios, including the offset in the BPT diagram, are caused by a higher ionization parameter both at fixed stellar mass and at fixed metallicity with additional contributions from a higher gas density and possibly a hardening of the ionizing radiation field. Ionization due to AGNs is ruled out as assessed with Chandra. As a consequence, we revisit the mass-metallicity relation using [NII]/Ha and a new calibration including [NII]/[SII] as recently introduced by Dopita et al. Consistent with our previous results, the most massive galaxies (M∗≳1011 M⊙M_\ast\gtrsim10^{11}~M_\odot) are fully enriched, while those at lower masses have metallicities lower than local galaxies. Finally, we demonstrate that the stellar masses, metallicities and star formation rates of the FMOS sample are well fit with a physically-motivated model for the chemical evolution of star-forming galaxies.Comment: 38 pages; Accepted for publication in Ap

    The XMM-Newton wide-field survey in the COSMOS field: I. Survey description

    Get PDF
    We present the first set of XMM-Newton EPIC observations in the 2 square degree COSMOS field. The strength of the COSMOS project is the unprecedented combination of a large solid angle and sensitivity over the whole multiwavelength spectrum. The XMM-Newton observations are very efficient in localizing and identifying active galactic nuclei (AGN) and clusters as well as groups of galaxies. One of the primary goals of the XMM-Newton Cosmos survey is to study the co-evolution of active galactic nuclei as a function of their environment in the Cosmic web. Here we present the log of observations, images and a summary of first research highlights for the first pass of 25 XMM-Newton pointings across the field. In the existing dataset we have detected 1416 new X-ray sources in the 0.5-2, 2-4.5 and 4.5-10 keV bands to an equivalent 0.5-2 keV flux limit of 7x10-16 erg cm-2 s-1. The number of sources is expected to grow to almost 2000 in the final coverage of the survey. From an X-ray color color analysis we identify a population of heavily obscured, partially leaky or reflecting absorbers, most of which are likely to be nearby, Compton-thick AGN.Comment: 9 pages, ApJS COSMOS Special Issue, 2007 in press. the full-resolution version is available at http://www.mpe.mpg.de/XMMCosmos/PAPERS/grh_cosmos.ps.g
    • 

    corecore