21 research outputs found

    SHISA6 Confers Resistance to Differentiation-Promoting Wnt/β-Catenin Signaling in Mouse Spermatogenic Stem Cells

    Get PDF
    In the seminiferous tubules of mouse testes, a population of glial cell line-derived neurotrophic factor family receptor alpha 1 (GFRα1)-positive spermatogonia harbors the stem cell functionality and supports continual spermatogenesis, likely independent of asymmetric division or definitive niche control. Here, we show that activation of Wnt/β-catenin signaling promotes spermatogonial differentiation and reduces the GFRα1+ cell pool. We further discovered that SHISA6 is a cell-autonomous Wnt inhibitor that is expressed in a restricted subset of GFRα1+ cells and confers resistance to the Wnt/β-catenin signaling. Shisa6+ cells appear to show stem cell-related characteristics, conjectured from the morphology and long-term fates of T (Brachyury)+ cells that are found largely overlapped with Shisa6+ cells. This study proposes a generic mechanism of stem cell regulation in a facultative (or open) niche environment, with which different levels of a cell-autonomous inhibitor (SHISA6, in this case) generates heterogeneous resistance to widely distributed differentiation-promoting extracellular signaling, such as WNTs

    SHISA6 Confers Resistance to Differentiation-Promoting Wnt/β-Catenin Signaling in Mouse Spermatogenic Stem Cells

    Get PDF
    In the seminiferous tubules of mouse testes, a population of glial cell line-derived neurotrophic factor family receptor alpha 1 (GFRα1)-positive spermatogonia harbors the stem cell functionality and supports continual spermatogenesis, likely independent of asymmetric division or definitive niche control. Here, we show that activation of Wnt/β-catenin signaling promotes spermatogonial differentiation and reduces the GFRα1+ cell pool. We further discovered that SHISA6 is a cell-autonomous Wnt inhibitor that is expressed in a restricted subset of GFRα1+ cells and confers resistance to the Wnt/β-catenin signaling. Shisa6+ cells appear to show stem cell-related characteristics, conjectured from the morphology and long-term fates of T (Brachyury)+ cells that are found largely overlapped with Shisa6+ cells. This study proposes a generic mechanism of stem cell regulation in a facultative (or open) niche environment, with which different levels of a cell-autonomous inhibitor (SHISA6, in this case) generates heterogeneous resistance to widely distributed differentiation-promoting extracellular signaling, such as WNTs

    Protein intake in inhabitants with regular exercise is associated with sleep quality: Results of the Shika study.

    No full text
    Study objectivesAlthough associations between sleep quality and environmental factors and nutrient intake have been reported, interactions between these factors have not been elucidated in detail. Therefore, this cross-sectional study examined the effects of regular exercise and nutrient intake on sleep quality using the Pittsburgh Sleep Quality Index (PSQI), which is the most frequently used index for sleep evaluation.MethodsThe participants included 378 individuals aged 40 years or older living in Shika Town, Ishikawa Prefecture. Of these individuals, 185 met the inclusion criteria. The participants completed a self-administered questionnaire assessing lifestyle habits and frequency and duration of exercise, the PSQI, and the brief-type self-administered diet history questionnaire (BDHQ) on nutrient intake.ResultsA two-way analysis of covariance on regular exercise and PSQI scores indicated that protein intake (17.13% of energy) was significantly higher in the regular exercise and PSQI ≤10 groups than in the non-regular exercise or PSQI ≥11 groups (p = 0.002). In a multiple logistic regression analysis with PSQI scores (≤10 and ≥11), protein intake was a significant independent variable in any of the models adjusted for confounding factors such as age, sex, body mass index, current smoker, and current drinker (OR: 1.357, 95% CI: 1.081, 1.704, p = 0.009) in the regular exercise group but not in the non-regular exercise group.Conclusions We identified a positive relationship between sleep quality and protein intake in the regular exercise group. These findings suggest that regular exercise at least twice a week for 30 minutes or longer combined with high protein intake contributes to good sleep quality

    PRICKLE1 Interaction with SYNAPSIN I Reveals a Role in Autism Spectrum Disorders

    Get PDF
    <div><p>The frequent comorbidity of Autism Spectrum Disorders (ASDs) with epilepsy suggests a shared underlying genetic susceptibility; several genes, when mutated, can contribute to both disorders. Recently, <i>PRICKLE1</i> missense mutations were found to segregate with ASD. However, the mechanism by which mutations in this gene might contribute to ASD is unknown. To elucidate the role of PRICKLE1 in ASDs, we carried out studies in <i>Prickle1<sup>+/−</sup></i> mice and <i>Drosophila</i>, yeast, and neuronal cell lines. We show that mice with <i>Prickle1</i> mutations exhibit ASD-like behaviors. To find proteins that interact with PRICKLE1 in the central nervous system, we performed a yeast two-hybrid screen with a human brain cDNA library and isolated a peptide with homology to SYNAPSIN I (SYN1), a protein involved in synaptogenesis, synaptic vesicle formation, and regulation of neurotransmitter release. Endogenous Prickle1 and Syn1 co-localize in neurons and physically interact via the <i>SYN1</i> region mutated in ASD and epilepsy. Finally, a mutation in <i>PRICKLE1</i> disrupts its ability to increase the size of dense-core vesicles in PC12 cells. Taken together, these findings suggest <i>PRICKLE1</i> mutations contribute to ASD by disrupting the interaction with SYN1 and regulation of synaptic vesicles.</p></div
    corecore