24 research outputs found
<i>Toxoplasma gondii</i> peptide ligands open the gate of the HLA class I binding groove
HLA class I presentation of pathogen-derived peptide ligands is essential for CD8+ T-cell recognition of Toxoplasma gondii infected cells. Currently, little data exist pertaining to peptides that are presented after T. gondii infection. Herein we purify HLA-A*02:01 complexes from T. gondii infected cells and characterize the peptide ligands using LCMS. We identify 195 T. gondii encoded ligands originating from both secreted and cytoplasmic proteins. Surprisingly, T. gondii ligands are significantly longer than uninfected host ligands, and these longer pathogen-derived peptides maintain a canonical N-terminal binding core yet exhibit a C-terminal extension of 1-30 amino acids. Structural analysis demonstrates that binding of extended peptides opens the HLA class I F' pocket, allowing the C-terminal extension to protrude through one end of the binding groove. In summary, we demonstrate that unrealized structural flexibility makes MHC class I receptive to parasite-derived ligands that exhibit unique C-terminal peptide extensions.Fil: McMurtrey, Curtis. University of Oklahoma; Estados UnidosFil: Trolle, Thomas. Technical University of Denmark; Dinamarca. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Sansom, Tiffany. University at Buffalo; Estados UnidosFil: Remesh, Soumya G.. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Kaever, Thomas. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Bardet, Wilfried. University of Oklahoma; Estados UnidosFil: Jackson, Kenneth. University of Oklahoma; Estados UnidosFil: McLeod, Rima. University of Chicago; Estados UnidosFil: Sette, Alessandro. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Nielsen, Morten. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl AlfonsÃn" (sede Chascomús). Universidad Nacional de San MartÃn. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl AlfonsÃn" (sede Chascomús); Argentina. Technical University of Denmark; DinamarcaFil: Zajonc, Dirk M.. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Blader, Ira J. University at Buffalo; Estados UnidosFil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Hildebrand, William. University of Oklahoma; Estados Unido
Functional inhibition related to structure of a highly potent insulin-specific CD8 T cell clone using altered peptide ligands
Insulin-reactive CD8 T cells are amongst the earliest islet-infiltrating CD8 T cells in NOD mice. Cloned insulin B15–23-reactive cells (designated G9C8), restricted by H-2Kd, are highly diabetogenic. We used altered peptide ligands (APL) substituted at TCR contact sites, positions (p)6 and 8, to investigate G9C8 T cell function and correlated this with structure. Cytotoxicity and IFN-γ production assays revealed that p6G and p8R could not be replaced by any naturally occurring amino acid without abrogating recognition and functional response by the G9C8 clone. When tested for antagonist activity with APL differing from the native peptide at either of these positions, the peptide variants, G6H and R8L showed the capacity to reduce the agonist response to the native peptide. The antagonist activity in cytotoxicity and IFN-γ production assays can be correlated with conformational changes induced by different structures of the MHC-peptide complexes, shown by molecular modeling. We conclude that p6 and p8 of the insulin B15–23 peptide are very important for TCR stimulation of this clone and no substitutions are tolerated at these positions in the peptide. This is important in considering the therapeutic use of peptides as APL that encompass both CD4 and CD8 epitopes of insulin
Cancer Genome Sequencing and Its Implications for Personalized Cancer Vaccines
New DNA sequencing platforms have revolutionized human genome sequencing. The dramatic advances in genome sequencing technologies predict that the $1,000 genome will become a reality within the next few years. Applied to cancer, the availability of cancer genome sequences permits real-time decision-making with the potential to affect diagnosis, prognosis, and treatment, and has opened the door towards personalized medicine. A promising strategy is the identification of mutated tumor antigens, and the design of personalized cancer vaccines. Supporting this notion are preliminary analyses of the epitope landscape in breast cancer suggesting that individual tumors express significant numbers of novel antigens to the immune system that can be specifically targeted through cancer vaccines
Human Major Histocompatibility Complex (MHC) Class I Molecules with Disulfide Traps Secure Disease-related Antigenic Peptides and Exclude Competitor Peptides*
The ongoing discovery of disease-associated epitopes detected by CD8 T
cells greatly facilitates peptide-based vaccine approaches and the
construction of multimeric soluble recombinant proteins (e.g.
tetramers) for isolation and enumeration of antigen-specific CD8 T cells.
Related to these outcomes of epitope discovery is the recent demonstration
that MHC class I/peptide complexes can be expressed as single chain trimers
(SCTs) with peptide, β2m and heavy chain connected by linkers
to form a single polypeptide chain. Studies using clinically relevant mouse
models of human disease have shown that SCTs expressed by DNA vaccination are
potent stimulators of cytotoxic T lymphocytes. Their vaccine efficacy has been
attributed to the fact that SCTs contain a preprocessed and preloaded peptide
that is stably displayed on the cell surface. Although SCTs of HLA class
I/peptide complexes have been previously reported, they have not been
characterized for biochemical stability or susceptibility to exogenous peptide
binding. Here we demonstrate that human SCTs remain almost exclusively intact
when expressed in cells and can incorporate a disulfide trap that dramatically
excludes the binding of exogenous peptides. The mechanistic and practical
applications of these findings for vaccine development and T cell
isolation/enumeration are discussed