53 research outputs found
Recommended from our members
On the implications of aerosol liquid water and phase separation for modeled organic aerosol mass
Water is an important component of PM2.5 Many traditional SOA species are highly soluble and thus can be considered extractable Water can influence the partitioning of compounds traditionally considered insoluble in models Organic aerosol takes up water according to RH Organic aerosol interacts with inorganic water Deviations in ideality (solubility) must be considered
Airborne observations of methane emissions from rice cultivation in the Sacramento Valley of California
Airborne measurements of methane (CH4) and carbon dioxide (CO2) were taken over the rice growing region of California's Sacramento Valley in the late spring of 2010 and 2011. From these and ancillary measurements, we show that CH4 mixing ratios were higher in the planetary boundary layer above the Sacramento Valley during the rice growing season than they were before it, which we attribute to emissions from rice paddies. We derive daytime emission fluxes of CH4 between 0.6 and 2.0% of the CO2 taken up by photosynthesis on a per carbon, or mole to mole, basis. We also use a mixing model to determine an average CH 4/CO2 flux ratio of -0.6% for one day early in the growing season of 2010. We conclude the CH4/CO2 flux ratio estimates from a single rice field in a previous study are representative of rice fields in the Sacramento Valley. If generally true, the California Air Resources Board (CARB) greenhouse gas inventory emission rate of 2.7×1010g CH4/yr is approximately three times lower than the range of probable CH4 emissions (7.8-9.3×10 10g CH4/yr) from rice cultivation derived in this study. We attribute this difference to decreased burning of the residual rice crop since 1991, which leads to an increase in CH4 emissions from rice paddies in succeeding years, but which is not accounted for in the CARB inventory. © 2012. American Geophysical Union. All Rights Reserved
The environmental impacts of palm oil in context
Delivering the Sustainable Development Goals (SDGs) requires balancing demands on land between agriculture (SDG 2) and biodiversity (SDG 15). The production of vegetable oils, and in particular palm oil, illustrates these competing demands and trade-offs. Palm oil accounts for 40% of the current global annual demand for vegetable oil as food, animal feed, and fuel (210 million tons (Mt)), but planted oil palm covers less than 5-5.5% of total global oil crop area (ca. 425 Mha), due to oil palm’s relatively high yields5. Recent oil palm expansion in forested regions of Borneo, Sumatra, and the Malay Peninsula, where >90% of global palm oil is produced, has led to substantial concern around oil palm’s role in deforestation. Oil palm expansion’s direct contribution to regional tropical deforestation varies widely, ranging from 3% in West Africa to 47% in Malaysia. Oil palm is also implicated in peatland draining and burning in Southeast Asia. Documented negative environmental impacts from such expansion include biodiversity declines, greenhouse gas emissions, and air pollution. However, oil palm generally produces more oil per area than other oil crops, is often economically viable in sites unsuitable for most other crops, and generates considerable wealth for at least some actors. Global demand for vegetable oils is projected to increase by 46% by 20509. Meeting this demand through additional expansion of oil palm versus other vegetable oil crops will lead to substantial differential effects on biodiversity, food security, climate change, land degradation, and livelihoods. Our review highlights that, although substantial gaps remain in our understanding of the relationship between the environmental, socio-cultural and economic impacts of oil palm, and the scope, stringency and effectiveness of initiatives to address these, there has been little research into the impacts and trade-offs of other vegetable oil crops.
65 Greater research attention needs to be given to investigating the impacts of palm oil production
66 compared to alternatives for the trade-offs to be assessed at a global scale
Recommended from our members
Siloxanes are the most abundant volatile organic compound emitted from engineering students in a classroom
Direct human emissions are known to contribute volatile organic compounds (VOCs) to indoor air via various mechanisms. However, few measurements that determine the emissions of a full suite of occupant-associated VOCs are available. We measured occupant-related VOC emissions from engineering students in a classroom using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). The dominant compound emitted was a cyclic volatile methylsiloxane (cVMS), decamethylcyclopentasiloxane (D5), which is a major inactive ingredient in some personal care products such as antiperspirants. D5 was found to contribute ∼30% of the total indoor VOC mass concentration as measured by the PTR-TOF-MS. Octamethylcyclotetrasiloxane (D4) and dodecamethylcyclohexasiloxane (D6) were detected at abundances that were 1-2 orders of magnitude lower. The per-person emission rate of these three cVMS declined monotonically from morning into the afternoon, consistent with expectations for emissions from daily morning application of personal care products
- …
