467 research outputs found

    GPS-based CERN-LNGS time link for Borexino

    Get PDF
    We describe the design, the equipment, and the calibration of a new GPS based time link between CERN and the Borexino experiment at the Gran Sasso Laboratory in Italy. This system has been installed and operated in Borexino since March 2012, and used for a precise measurement of CNGS muon neutrinos speed in May 2012. The result of the measurement will be reported in a different letter.Comment: 13 pages, 11 figure

    Characterization of 30 76^{76}Ge enriched Broad Energy Ge detectors for GERDA Phase II

    Get PDF
    The GERmanium Detector Array (GERDA) is a low background experiment located at the Laboratori Nazionali del Gran Sasso in Italy, which searches for neutrinoless double beta decay of 76^{76}Ge into 76^{76}Se+2e^-. GERDA has been conceived in two phases. Phase II, which started in December 2015, features several novelties including 30 new Ge detectors. These were manufactured according to the Broad Energy Germanium (BEGe) detector design that has a better background discrimination capability and energy resolution compared to formerly widely-used types. Prior to their installation, the new BEGe detectors were mounted in vacuum cryostats and characterized in detail in the HADES underground laboratory in Belgium. This paper describes the properties and the overall performance of these detectors during operation in vacuum. The characterization campaign provided not only direct input for GERDA Phase II data collection and analyses, but also allowed to study detector phenomena, detector correlations as well as to test the strength of pulse shape simulation codes.Comment: 29 pages, 18 figure

    Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector

    Full text link
    We report the measurement of electron neutrino elastic scattering from 8B solar neutrinos with 3 MeV energy threshold by the Borexino detector in Gran Sasso (Italy). The rate of solar neutrino-induced electron scattering events above this energy in Borexino is 0.217 +- 0.038 (stat) +- 0.008 (syst) cpd/100 t, which corresponds to the equivalent unoscillated flux of (2.4 +- 0.4 (stat) +- 0.1 (syst))x10^6 cm^-2 s^-1, in good agreement with measurements from SNO and SuperKamiokaNDE. Assuming the 8B neutrino flux predicted by the high metallicity Standard Solar Model, the average 8B neutrino survival probability above 3 MeV is measured to be 0.29+-0.10. The survival probabilities for 7Be and 8B neutrinos as measured by Borexino differ by 1.9 sigma. These results are consistent with the prediction of the MSW-LMA solution of a transition in the solar electron neutrino survival probability between the low energy vacuum-driven and the high-energy matter-enhanced solar neutrino oscillation regimes.Comment: 10 pages, 8 figures, 6 table

    Recent Borexino results and prospects for the near future

    Full text link
    The Borexino experiment, located in the Gran Sasso National Laboratory, is an organic liquid scintillator detector conceived for the real time spectroscopy of low energy solar neutrinos. The data taking campaign phase I (2007 - 2010) has allowed the first independent measurements of 7Be, 8B and pep fluxes as well as the first measurement of anti-neutrinos from the earth. After a purification of the scintillator, Borexino is now in phase II since 2011. We review here the recent results achieved during 2013, concerning the seasonal modulation in the 7Be signal, the study of cosmogenic backgrounds and the updated measurement of geo-neutrinos. We also review the upcoming measurements from phase II data (pp, pep, CNO) and the project SOX devoted to the study of sterile neutrinos via the use of a 51Cr neutrino source and a 144Ce-144Pr antineutrino source placed in close proximity of the active material.Comment: 8 pages, 11 figures. To be published as proceedings of Rencontres de Moriond EW 201

    The first search for bosonic super-WIMPs with masses up to 1 MeV/c2^2 with GERDA

    Get PDF
    We present the first search for bosonic super-WIMPs as keV-scale dark matter candidates performed with the GERDA experiment. GERDA is a neutrinoless double-beta decay experiment which operates high-purity germanium detectors enriched in 76^{76}Ge in an ultra-low background environment at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN in Italy. Searches were performed for pseudoscalar and vector particles in the mass region from 60 keV/c2^2 to 1 MeV/c2^2. No evidence for a dark matter signal was observed, and the most stringent constraints on the couplings of super-WIMPs with masses above 120 keV/c2^2 have been set. As an example, at a mass of 150 keV/c2^2 the most stringent direct limits on the dimensionless couplings of axion-like particles and dark photons to electrons of gae<31012g_{ae} < 3 \cdot 10^{-12} and α/α<6.51024{\alpha'}/{\alpha} < 6.5 \cdot 10^{-24} at 90% credible interval, respectively, were obtained.Comment: 6 pages, 3 figures, submitted to Physical Review Letters, added list of authors, updated ref. [21

    Muon and Cosmogenic Neutron Detection in Borexino

    Full text link
    Borexino, a liquid scintillator detector at LNGS, is designed for the detection of neutrinos and antineutrinos from the Sun, supernovae, nuclear reactors, and the Earth. The feeble nature of these signals requires a strong suppression of backgrounds below a few MeV. Very low intrinsic radiogenic contamination of all detector components needs to be accompanied by the efficient identification of muons and of muon-induced backgrounds. Muons produce unstable nuclei by spallation processes along their trajectory through the detector whose decays can mimic the expected signals; for isotopes with half-lives longer than a few seconds, the dead time induced by a muon-related veto becomes unacceptably long, unless its application can be restricted to a sub-volume along the muon track. Consequently, not only the identification of muons with very high efficiency but also a precise reconstruction of their tracks is of primary importance for the physics program of the experiment. The Borexino inner detector is surrounded by an outer water-Cherenkov detector that plays a fundamental role in accomplishing this task. The detector design principles and their implementation are described. The strategies adopted to identify muons are reviewed and their efficiency is evaluated. The overall muon veto efficiency is found to be 99.992% or better. Ad-hoc track reconstruction algorithms developed are presented. Their performance is tested against muon events of known direction such as those from the CNGS neutrino beam, test tracks available from a dedicated External Muon Tracker and cosmic muons whose angular distribution reflects the local overburden profile. The achieved angular resolution is 3-5 deg and the lateral resolution is 35-50 cm, depending on the impact parameter of the crossing muon. The methods implemented to efficiently tag cosmogenic neutrons are also presented.Comment: 42 pages. 32 figures on 37 files. Uses JINST.cls. 1 auxiliary file (defines.tex) with TEX macros. submitted to Journal of Instrumentatio

    Background free search for neutrinoless double beta decay with GERDA Phase II

    Full text link
    The Standard Model of particle physics cannot explain the dominance of matter over anti-matter in our Universe. In many model extensions this is a very natural consequence of neutrinos being their own anti-particles (Majorana particles) which implies that a lepton number violating radioactive decay named neutrinoless double beta (0νββ0\nu\beta\beta) decay should exist. The detection of this extremely rare hypothetical process requires utmost suppression of any kind of backgrounds. The GERDA collaboration searches for 0νββ0\nu\beta\beta decay of 76^{76}Ge (^{76}\rm{Ge} \rightarrow\,^{76}\rm{Se} + 2e^-) by operating bare detectors made from germanium with enriched 76^{76}Ge fraction in liquid argon. Here, we report on first data of GERDA Phase II. A background level of 103\approx10^{-3} cts/(keV\cdotkg\cdotyr) has been achieved which is the world-best if weighted by the narrow energy-signal region of germanium detectors. Combining Phase I and II data we find no signal and deduce a new lower limit for the half-life of 5.310255.3\cdot10^{25} yr at 90 % C.L. Our sensitivity of 4.010254.0\cdot10^{25} yr is competitive with the one of experiments with significantly larger isotope mass. GERDA is the first 0νββ0\nu\beta\beta experiment that will be background-free up to its design exposure. This progress relies on a novel active veto system, the superior germanium detector energy resolution and the improved background recognition of our new detectors. The unique discovery potential of an essentially background-free search for 0νββ0\nu\beta\beta decay motivates a larger germanium experiment with higher sensitivity.Comment: 14 pages, 9 figures, 1 table; ; data, figures and images available at http://www.mpi-hd.mpg/gerda/publi
    corecore