74 research outputs found

    A thermostable GH45 endoglucanase from yeast: impact of its atypical multimodularity on activity

    Get PDF
    BACKGROUND: The gene encoding an atypical multi-modular glycoside hydrolase family 45 endoglucanase bearing five different family 1 carbohydrate binding modules (CBM1), designated PpCel45A, was identified in the Pichia pastoris GS115 genome. RESULTS: PpCel45A (full-length open reading frame), and three derived constructs comprising (i) the catalytic module with its proximal CBM1, (ii) the catalytic module only, and (iii) the five CBM1 modules without catalytic module, were successfully expressed to high yields (up to 2 grams per litre of culture) in P. pastoris X33. Although the constructs containing the catalytic module displayed similar activities towards a range of glucans, comparison of their biochemical characteristics revealed striking differences. We observed a high thermostability of PpCel45A (Half life time of 6 h at 80°C), which decreased with the removal of CBMs and glycosylated linkers. However, both binding to crystalline cellulose and hydrolysis of crystalline cellulose and cellohexaose were substantially boosted by the presence of one CBM rather than five. CONCLUSIONS: The present study has revealed the specific features of the first characterized endo β-1,4 glucanase from yeast, whose thermostability is promising for biotechnological applications related to the saccharification of lignocellulosic biomass such as consolidated bioprocessing

    Molecular phylogeny of Trametes and related genera, and description of a new genus Leiotrametes

    Get PDF
    A phylogenetic analysis of and related taxa is proposed, based on a wide sampling of temperate and tropical species. Concatenate sequences of ribosomal DNA (ITS1-5.8S-ITS2) and RPB2 gene from mycelia cultures were analyzed by Maximum Likelihood and Bayesian methods, whilst morphological features were documented from the corresponding herbarium vouchers. Congruent results were obtained from analyses of ribosomal LSU sequences downloaded from Genbank. The Bayesian analysis of ITS + RPB2 sequences gave the best resolution for the phylogenetic reconstructions and revealed the existence of three main lineages in the -clade: 1) a monospecific lineage represented by 2) a lineage including the genus in its traditional sense and several species usually classified in the genus (, , , ) & 3) a lineage corresponding to the core genus , including type species of , and . The presence of a pseudostipe, aspect and structure of the abhymenial surface, colour change with 5% aqueous solutions of potassium hydroxide and topography of pigments on skeletal hyphae gave relevant morphological support to these clades. When the structure of the hymenial surface, presence of a black line below the tomentum and color of context (except for genus ) usually used in traditional polypore-classifications did not reveal any phylogenetic significance. A partial systematic arrangement of the clade is proposed, with the introduction of a new genus: Welti & Courtec. .. Two new combinations: (Berk.) Welti & Courtec. . and (Berk.) Welti & Courtec. . are proposed

    Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Filamentous fungi are potent biomass degraders due to their ability to thrive in ligno(hemi)cellulose-rich environments. During the last decade, fungal genome sequencing initiatives have yielded abundant information on the genes that are putatively involved in lignocellulose degradation. At present, additional experimental studies are essential to provide insights into the fungal secreted enzymatic pools involved in lignocellulose degradation.</p> <p>Results</p> <p>In this study, we performed a wide analysis of 20 filamentous fungi for which genomic data are available to investigate their biomass-hydrolysis potential. A comparison of fungal genomes and secretomes using enzyme activity profiling revealed discrepancies in carbohydrate active enzymes (CAZymes) sets dedicated to plant cell wall. Investigation of the contribution made by each secretome to the saccharification of wheat straw demonstrated that most of them individually supplemented the industrial <it>Trichoderma reesei </it>CL847 enzymatic cocktail. Unexpectedly, the most striking effect was obtained with the phytopathogen <it>Ustilago maydis </it>that improved the release of total sugars by 57% and of glucose by 22%. Proteomic analyses of the best-performing secretomes indicated a specific enzymatic mechanism of <it>U. maydis </it>that is likely to involve oxido-reductases and hemicellulases.</p> <p>Conclusion</p> <p>This study provides insight into the lignocellulose-degradation mechanisms by filamentous fungi and allows for the identification of a number of enzymes that are potentially useful to further improve the industrial lignocellulose bioconversion process.</p

    Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina

    Get PDF
    International audienceBackground: The understanding of enzymatic polysaccharide degradation has progressed intensely in the past few years with the identification of a new class of fungal-secreted enzymes, the lytic polysaccharide monooxygenases (LPMOs) that enhance cellulose conversion. In the fungal kingdom, saprotrophic fungi display a high number of genes encoding LPMOs from family AA9 but the functional relevance of this redundancy is not fully understood. Results: In this study, we investigated a set of AA9 LPMOs identified in the secretomes of the coprophilous ascomycete Podospora anserina, a biomass degrader of recalcitrant substrates. Their activity was assayed on cellulose in synergy with the cellobiose dehydrogenase from the same organism. We showed that the total release of oxidized oligosaccharides from cellulose was higher for PaLPMO9A, PaLPMO9E, and PaLPMO9H that harbored a carbohydrate-binding module from the family CBM1. Investigation of their regioselective mode of action revealed that PaLPMO9A and PaLPMO9H oxidatively cleaved at both C1 and C4 positions while PaLPMO9E released only C1-oxidized products. Rapid cleavage of cellulose was observed using PaLPMO9H that was the most versatile in terms of substrate specificity as it also displayed activity on cello-oligosaccharides and beta-(1,4)-linked hemicellulose polysaccharides (e.g., xyloglucan, glucomannan). Conclusions: This study provides insights into the mode of cleavage and substrate specificities of fungal AA9 LPMOs that will facilitate their application for the development of future biorefineries

    A fungal family of lytic polysaccharide monooxygenase-like copper proteins

    Get PDF
    Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that play a key role in the oxidative degradation of various biopolymers such as cellulose and chitin. While hunting for new LPMOs, we identified a new family of proteins, defined here as X325, in various fungal lineages. The three-dimensional structure of X325 revealed an overall LPMO fold and a His brace with an additional Asp ligand to Cu(II). Although LPMO-type activity of X325 members was initially expected, we demonstrated that X325 members do not perform oxidative cleavage of polysaccharides, establishing that X325s are not LPMOs. Investigations of the biological role of X325 in the ectomycorrhizal fungus Laccaria bicolor revealed exposure of the X325 protein at the interface between fungal hyphae and tree rootlet cells. Our results provide insights into a family of copper-containing proteins, which is widespread in the fungal kingdom and is evolutionarily related to LPMOs, but has diverged to biological functions other than polysaccharide degradation

    A fungal lytic polysaccharide monooxygenase is required for cell wall integrity, thermotolerance, and virulence of the fungal human pathogen Cryptococcus neoformans

    Get PDF
    Fungi often adapt to environmental stress by altering their size, shape, or rate of cell division. These morphological changes require reorganization of the cell wall, a structural feature external to the cell membrane composed of highly interconnected polysaccharides and glycoproteins. Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that are typically secreted into the extracellular space to catalyze initial oxidative steps in the degradation of complex biopolymers such as chitin and cellulose. However, their roles in modifying endogenous microbial carbohydrates are poorly characterized. The CEL1 gene in the human fungal pathogen Cryptococcus neoformans (Cn) is predicted by sequence homology to encode an LPMO of the AA9 enzyme family. The CEL1 gene is induced by host physiological pH and temperature, and it is primarily localized to the fungal cell wall. Targeted mutation of the CEL1 gene revealed that it is required for the expression of stress response phenotypes, including thermotolerance, cell wall integrity, and efficient cell cycle progression. Accordingly, a cel1Δ deletion mutant was avirulent in two models of C. neoformans infection. Therefore, in contrast to LPMO activity in other microorganisms that primarily targets exogenous polysaccharides, these data suggest that CnCel1 promotes intrinsic fungal cell wall remodeling events required for efficient adaptation to the host environment

    Conserved white-rot enzymatic mechanism for wood decay in the Basidiomycota genus Pycnoporus

    Get PDF
    White-rot (WR) fungi are pivotal decomposers of dead organic matter in forest ecosystems and typically use a large array of hydrolytic and oxidative enzymes to deconstruct lignocellulose. However, the extent of lignin and cellulose degradation may vary between species and wood type. Here, we combined comparative genomics, transcriptomics and secretome proteomics to identify conserved enzymatic signatures at the onset of wood-decaying activity within the Basidiomycota genus Pycnoporus. We observed a strong conservation in the genome structures and the repertoires of protein-coding genes across the four Pycnoporus species described to date, despite the species having distinct geographic distributions. We further analysed the early response of P. cinnabarinus, P. coccineus and P. sanguineus to diverse (ligno)-cellulosic substrates. We identified a conserved set of enzymes mobilized by the three species for breaking down cellulose, hemicellulose and pectin. The co-occurrence in the exo-proteomes of H2O2-producing enzymes with H2O2-consuming enzymes was a common feature of the three species, although each enzymatic partner displayed independent transcriptional regulation. Finally, cellobiose dehydrogenase-coding genes were systematically co-regulated with at least one AA9 lytic polysaccharide monooxygenase gene, indicative of enzymatic synergy in vivo. This study highlights a conserved core white-rot fungal enzymatic mechanism behind the wood-decaying process.Peer reviewe

    Lytic xylan oxidases from wood-decay fungi unlock biomass degradation

    Get PDF
    Wood biomass is the most abundant feedstock envisioned for the development of modern biorefineries. However, the cost-ef-fective conversion of this form of biomass into commodity products is limited by its resistance to enzymatic degradation. Here we describe a new family of fungal lytic polysaccharide monooxygenases (LPMOs) prevalent among white-rot and brown-rot basidiomycetes that is active on xylans—a recalcitrant polysaccharide abundant in wood biomass. Two AA14 LPMO members from the white-rot fungus Pycnoporus coccineus substantially increase the efficiency of wood saccharification through oxida-tive cleavage of highly refractory xylan-coated cellulose fibers. The discovery of this unique enzyme activity advances our knowledge on the degradation of woody biomass in nature and offers an innovative solution for improving enzyme cocktails for biorefinery applications

    A unique CE16 acetyl esterase from Podospora anserina active on polymeric xylan

    No full text
    The genome of the coprophilous fungus Podospora anserina displays an impressive array of genes encoding hemicellulolytic enzymes. In this study, we focused on a putative carbohydrate esterase (CE) from family 16 (CE16) that bears a carbohydrate-binding module from family CBM1. The protein was heterologously expressed in Pichia pastoris and purified to electrophoretic homogeneity. The P. anserina CE16 enzyme (PaCE16A) exhibited different catalytic properties than so far known CE16 esterases represented by the Trichoderma reesei CE16 acetyl esterase (TrCE16). A common property of both CE16 esterases is their exodeacetylase activity, i.e., deesterification at positions 3 and 4 of monomeric xylosides and the nonreducing end xylopyranosyl (Xylp) residue of oligomeric homologues. However, the PaCE16A showed lower positional specificity than TrCE16 and efficiently deacetylated also position 2. The major difference observed between PaCE16A and TrCE16 was found on polymeric substrate, acetylglucuronoxylan. While TrCE16 does not attack internal acetyl groups, PaCE16A deacetylated singly and doubly acetylated Xylp residues in the polymer to such an extent that it resulted in the polymer precipitation. Similarly as typical acetylxylan esterases belonging to CE1, CE4, CE5, and CE6 families, PaCE16A did not attack 3-O-acetyl group of xylopyranosyl residues carrying 4-O-methyl-d-glucuronic acid at position 2. PaCE16A thus represents a CE16 member displaying unique catalytic properties, which are intermediate between the TrCE16 exodeacetylase and acetylxylan esterases designed to deacetylate polymeric substrate. The catalytic versatility of PaCE16A makes the enzyme an important candidate for biotechnological applications
    corecore