13 research outputs found

    The Free-Living Stage Growth Conditions of the Endophytic Fungus Serendipita indica May Regulate Its Potential as Plant Growth Promoting Microbe

    Get PDF
    Serendipita indica (former Piriformospora indica) is a non-obligate endophytic fungus and generally a plant growth and defence promoter with high potential to be used in agriculture. However, S. indica may switch from biotrophy to saprotrophy losing its plant growth promoting traits. Our aim was to understand if the free-living stage growth conditions (namely C availability) regulate S. indica’s phenotype, and its potential as plant-growth-promoting-microbe (PGPM). We grew S. indica in its free-living stage under increasing C availabilities (2–20 g L–1 of glucose or sucrose). We first characterised the effect of C availability during free-living stage growth on fungal phenotype: colonies growth and physiology (plasma membrane proton pumps, stable isotopic signatures, and potential extracellular decomposing enzymes). The effect of the C availability during the free-living stage of the PGPM was evaluated on wheat. We observed that C availability during the free-living stage regulated S. indica’s growth, ultrastructure and physiology, resulting in two distinct colony phenotypes: compact and explorer. The compact phenotype developed at low C, used peptone as the major C and N source, and displayed higher decomposing potential for C providing substrates; while the explorer phenotype developed at high C, used glucose and sucrose as major C sources and casein and yeast extract as major N sources, and displayed higher decomposing potential for N and P providing substrates. The C availability, or the C/N ratio, during the free-living stage left a legacy to the symbiosis stage, regulating S. indica’s potential to promote plant growth: wheat growth promotion by the explorer phenotype was ± 40% higher than that by the compact phenotype. Our study highlights the importance of considering microbial ecology in designing PGPM/biofertilizers. Further studies are needed to test the phenotypes under more extreme conditions, and to understand if the in vitro acquired characteristics persist under field conditions.info:eu-repo/semantics/publishedVersio

    Shedding some light over the floral metabolism by Arum Lily (Zantedeschia aethiopica) Spathe de novo transcriptome assembly

    Get PDF
    Zantedeschia aethiopica is an evergreen perennial plant cultivated worldwide and commonly used for ornamental and medicinal purposes including the treatment of bacterial infections. However, the current understanding of molecular and physiological mechanisms in this plant is limited, in comparison to other non-model plants. In order to improve understanding of the biology of this botanical species, RNA-Seq technology was used for transcriptome assembly and characterization. Following Z. aethiopica spathe tissue RNA extraction, high-throughput RNA sequencing was performed with the aim of obtaining both abundant and rare transcript data. Functional profiling based on KEGG Orthology (KO) analysis highlighted contigs that were involved predominantly in genetic information (37%) and metabolism (34%) processes. Predicted proteins involved in the plant circadian system, hormone signal transduction, secondary metabolism and basal immunity are described here. In silico screening of the transcriptome data set for antimicrobial peptide (AMP) – encoding sequences was also carried out and three lipid transfer proteins (LTP) were identified as potential AMPs involved in plant defense. Spathe predicted protein maps were drawn, and suggested that major plant efforts are expended in guaranteeing the maintenance of cell homeostasis, characterized by high investment in carbohydrate, amino acid and energy metabolism as well as in genetic information

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Caracterização da expressão do gene codificador da enzima de conjugação a ubiquitina (E2) em soja inoculada com Meloidogyne incognita e infestada com Anticarsia gemmatalis

    Get PDF
    Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, 2011.A soja é uma cultura de grande importância econômica no Brasil. No entanto, vários fatores bióticos afetam sua produtividade. Entre esse fatores destacam-se os danos causados por insetos-praga, como lagartas desfolhadoras e por fitonematoides. Várias estratégias envolvendo transgenia têm sido desenvolvidas para o controle de pragas e doenças, sendo importante o uso de promotores gênicos capazes de direcionar a expressão de transgenes nos tecidos atacados, atingindo níveis adequados para desencadear a proteção vegetal. Vários trabalhos sugerem um importante papel da via ubiquitina-proteassoma ao longo do desenvolvimento das plantas, assim como em resposta a estresses bióticos. Particularmente, genes codificadores de enzima de conjugação a ubiquitina (E2) mostraram ser ativados em sítio de alimentação de Meloidogyne incognita e em resposta ao ataque de insetos. Neste contexto, o presente trabalho tem como objetivo determinar o perfil de expressão transcricional do gene E2 em diferentes tecidos de soja, em diferentes fases do desenvolvimento, em raízes inoculadas com M. incognita e folhas infestadas por Anticarsia gemmatalis, pela técnica de qRT-PCR, como caracterização de promotor cognato UceS8.3, previamente isolado e patenteado. Para a normalização do gene E2 nos experimentos de qPCR, oito genes de referência clássicos foram selecionados e validados quanto a sua estabilidade de expressão nas diferentes condições experimentais analisadas. Os melhores genes de referência foram utilizados na quantificação dos níveis do transcrito do gene E2. O acúmulo de transcritos de E2 foi determinado espacial e temporalmente, nos orgãos de raiz, caule, folha, flor e vagem, nos fases de desenvolvimento (V4, R2 e R4). Foi observado que ocorre acúmulo de transcritos de E2 em R4, provavelmente relacionado a senescência da planta. Em seguida, bioensaios foram conduzidos em raízes de soja inoculadas com juvenis de segundo estádio (J2) de M. incognita, e em folhas infestadas com lagartas de quarto ínstar de A. gemmatalis. Nas interações com nematóide e com insetos, foi detectado acúmulo de transcritos de E2 de 2 a 6 vezes. Paralelamente, o banco de bibliotecas subtrativas GENOSOJA foi utilizado para verificar acúmulo de transcritos de E2 em resposta a estresses (bióticos e abióticos). As análises in silico mostraram que o gene E2 é mais abundante em resposta a bactéria Bradirhyzobium japonicum, ao fungo Phakopsora pachyrhyzi e ao estresse hídrico. Os resultados obtidos de quantificação de transcritos de E2 e da análise in silico foram relacionados a cis-elementos presentes na região regulatória, e indicam que o promotor UceS8.3 representa uma importante ferramenta biotecnológica para obtenção de plantas geneticamente modificadas resistentes a fitonematóides, doenças fúngicas, insetos desfolhadores e/ou deficiência hídrica. ______________________________________________________________________________ ABSTRACTSoybean is a crop of great economic importance in Brazil. However, several biotic factors have been affecting soya productivity. Among them, the damage caused by insect pests such as defoliating caterpillars and plant nematodes. Several strategies involving transgenic plants have been developed to control pests and diseases, being important the utilization of gene promoters capable of driving transgene expression in tissues attacked, at appropriate levels to trigger plant protection. Several studies suggest an important role of ubiquitin-proteasome pathway during plant development and in plant responses to biotic stresses. Particularly, genes encoding ubiquitin conjugation factors (E2) have been shown to be activated in feeding sites of Meloidogyne incognita and in response to insect attack. In this context, this study aims to determine the accumulation of the E2 transcripts considering different tissues of soybean, different stages of development, roots inoculated with M. incognita and leaves infested with Anticarsia gemmatalis, by qRT-PCR technique in order to further characterize its cognate promoter (UceS8.3). Aiming E2 gene normalization in qPCR experiments, eight classical reference genes were selected and validated for their expression stability. The best reference genes were used in the normalization of the E2 gene. To characterize the spatial and temporal accumulation of E2 transcripts, samples of root, stem, leaf, flower and pod were collected at three different developmental stages (V4, R2 and R4). It was found that E2 transcripts accumulated in R4, probably related to senescence process. Thus, bioassays were conducted in soybean roots inoculated with second stage juveniles (J2) of M. incognita, and leaves infested with fourth instar larvae of A. gemmatalis. Considering the nematode and caterpillars interactions, it was detected an E2 transcripts accumulation of 2 to 6 times. Parallely, the subtractive libraries bank GENOSOJA was used to verify the accumulation of E2 transcripts in response to other stresses (biotic and abiotic). In silico analysis showed that the E2 gene is more abundant in response to Bradirhyzobium japonicum bacteria, Phakopsora pachyrhyzi fungal, and to drought stress. The results were related to cis-elements present in the regulatory region, and suggested that the UceS8.3 promoter represents an important biotechnological tool to genetic modified plant generation resistant to plant nematodes, fungal diseases, defoliating insects and/or hydric deficit
    corecore