38 research outputs found

    Asymmetric reduction of aliphatic ketones and acyl silanes using chiral anti-pentane-2,4-diol and a catalytic amount of 2,4-dinitrobenzenesulfonic acid

    Get PDF
    金沢大学医薬保健研究域薬学系Aliphatic ketones were reduced to the corresponding secondary alcohols by using anti-1,3-diol and a catalytic amount of 2,4-dinitrobenzenesulfonic acid (DNBSA) in benzene at reflux. Addition of 1-octanethiol in that media improved the efficiency of the reduction. Asymmetric reduction of aliphatic ketones was performed by using chiral anti-pentane-2,4-diol, and highly asymmetric induction (up to >99% ee) was observed in the reduction of tert-alkyl ketones. Asymmetric reduction of acyl silanes using chiral anti-pentane-2,4-diol and DNBSA proceeded efficiently in the absence of octanethiol and the corresponding α-silyl alcohols were obtained in high yields with high ees. © 2010

    Magnetic droplet nucleation with homochiral Neel domain wall

    Full text link
    We investigate the effect of the Dzyaloshinskii Moriya interaction (DMI) on magnetic domain nucleation in a ferromagnetic thin film with perpendicular magnetic anisotropy. We propose an extended droplet model to determine the nucleation field as a function of the in-plane field. The model can explain the experimentally observed nucleation in a CoNi microstrip with the interfacial DMI. The results are also reproduced by micromagnetic simulation based on the string model. The electrical measurement method proposed in this study can be widely used to quantitatively determine the DMI energy density

    Vasculature-driven stem cell population coordinates tissue scaling in dynamic organs

    Get PDF
    Stem cell (SC) proliferation and differentiation organize tissue homeostasis. However, how SCs regulate coordinate tissue scaling in dynamic organs remain unknown. Here, we delineate SC regulations in dynamic skin. We found that interfollicular epidermal SCs (IFESCs) shape basal epidermal proliferating clusters (EPCs) in expanding abdominal epidermis of pregnant mice and proliferating plantar epidermis. EPCs consist of IFESC-derived Tbx3⁺–basal cells (Tbx3⁺-BCs) and their neighboring cells where Adam8–extracellular signal–regulated kinase signaling is activated. Clonal lineage tracing revealed that Tbx3⁺-BC clones emerge in the abdominal epidermis during pregnancy, followed by differentiation after parturition. In the plantar epidermis, Tbx3⁺-BCs are sustained as long-lived SCs to maintain EPCs invariably. We showed that Tbx3⁺-BCs are vasculature-dependent IFESCs and identified mechanical stretch as an external cue for the vasculature-driven EPC formation. Our results uncover vasculature-mediated IFESC regulations, which explain how the epidermis adjusts its size in orchestration with dermal constituents in dynamic skin

    Association of Habitual Physical Activity Measured by an Accelerometer with High-Density Lipoprotein Cholesterol Levels in Maintenance Hemodialysis Patients

    Get PDF
    After confirming the relationship between high-density lipoprotein cholesterol (HDL-C) levels and mortality in hemodialysis patients for study 1, we investigated the effect of physical activity on their HDL-C levels for study 2. In study 1, 266 hemodialysis patients were monitored prospectively for five years, and Cox proportional hazard regression confirmed the contribution of HDL-C to mortality. In study 2, 116 patients were recruited after excluding those with severe comorbidities or requiring assistance from another person to walk. Baseline characteristics, such as demographic factors, physical constitution, primary kidney disease, comorbid conditions, smoking habits, drug use, and laboratory parameters, were collected from patient hospital records. An accelerometer measured physical activity as the number of steps per day over five consecutive days, and multiple regression evaluated the association between physical activity and HDL-C levels. Seventy-seven patients died during the follow-up period. In study 1, we confirmed that HDL-C level was a significant predictor of mortality (P=0.03). After adjusting for patient characteristics in study 2, physical activity was independently associated with HDL-C levels (adjusted R2=0.255; P=0.005). In conclusion, physical inactivity was strongly associated with decreased HDL-C levels in hemodialysis patients

    Leptin to high-molecular-weight adiponectin ratio is independently correlated with carotid intima-media thickness in men, but not in women.

    Get PDF
    BACKGROUND: The leptin:adiponectin ratio (L:A ratio) is an independent predictor of carotid intima-media thickness (CIMT). OBJECTIVE: To evaluate whether the leptin:high-molecular-weight adiponectin ratio (L:HA ratio) is associated with CIMT in the general population. METHODS: We investigated the relationship between the L:HA ratio and CIMT in 233 Japanese study participants (106 men and 127 women). RESULTS: After adjustment for confounding factors, CIMT was significantly correlated with the log L:HA ratio (beta = 0.11, p = 0.014) in men, whereas no correlation was observed in women (beta = 0.01, p = 0.50). Conclusion: The L:HA ratio is closely correlated with CIMT in men, but not in women

    Identifying Alternative Hyper-Splicing Signatures in MG-Thymoma by Exon Arrays

    Get PDF
    BACKGROUND: The vast majority of human genes (>70%) are alternatively spliced. Although alternative pre-mRNA processing is modified in multiple tumors, alternative hyper-splicing signatures specific to particular tumor types are still lacking. Here, we report the use of Affymetrix Human Exon Arrays to spot hyper-splicing events characteristic of myasthenia gravis (MG)-thymoma, thymic tumors which develop in patients with MG and discriminate them from colon cancer changes. METHODOLOGY/PRINCIPAL FINDINGS: We combined GO term to parent threshold-based and threshold-independent ad-hoc functional statistics with in-depth analysis of key modified transcripts to highlight various exon-specific changes. These denote alternative splicing in MG-thymoma tumors compared to healthy human thymus and to in-house and Affymetrix datasets from colon cancer and healthy tissues. By using both global and specific, term-to-parent Gene Ontology (GO) statistical comparisons, our functional integrative ad-hoc method allowed the detection of disease-relevant splicing events. CONCLUSIONS/SIGNIFICANCE: Hyper-spliced transcripts spanned several categories, including the tumorogenic ERBB4 tyrosine kinase receptor and the connective tissue growth factor CTGF, as well as the immune function-related histocompatibility gene HLA-DRB1 and interleukin (IL)19, two muscle-specific collagens and one myosin heavy chain gene; intriguingly, a putative new exon was discovered in the MG-involved acetylcholinesterase ACHE gene. Corresponding changes in spliceosome composition were indicated by co-decreases in the splicing factors ASF/SF(2) and SC35. Parallel tumor-associated changes occurred in colon cancer as well, but the majority of the apparent hyper-splicing events were particular to MG-thymoma and could be validated by Fluorescent In-Situ Hybridization (FISH), Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and mass spectrometry (MS) followed by peptide sequencing. Our findings demonstrate a particular alternative hyper-splicing signature for transcripts over-expressed in MG-thymoma, supporting the hypothesis that alternative hyper-splicing contributes to shaping the biological functions of these and other specialized tumors and opening new venues for the development of diagnosis and treatment approaches

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore