204 research outputs found

    Oyster reef restoration fails to recoup global historic ecosystem losses despite substantial biodiversity gain

    Get PDF
    Human activities have led to degradation of ecosystems globally. The lost ecosystem functions and services accumulate from the time of disturbance to the full recovery of the ecosystem and can be quantified as a “recovery debt,” providing a valuable tool to develop better restoration practices that accelerate recovery and limit losses. Here, we quantified the recovery of faunal biodiversity and abundance toward a predisturbed state following structural restoration of oyster habitats globally. We found that while restoration initiates a rapid increase in biodiversity and abundance of reef-associated species within 2 years, recovery rate then decreases substantially, leaving a global shortfall in recovery of 35% below a predisturbed state. While efficient restoration methods boost recovery and minimize recovery shortfalls, the time to full recovery is yet to be quantified. Therefore, potential future coastal development should weigh up not only the instantaneous damage to ecosystem functions but also the potential for generational loss of services

    The imaging properties of the Gas Pixel Detector as a focal plane polarimeter

    Full text link
    X-rays are particularly suited to probe the physics of extreme objects. However, despite the enormous improvements of X-ray Astronomy in imaging, spectroscopy and timing, polarimetry remains largely unexplored. We propose the photoelectric polarimeter Gas Pixel Detector (GPD) as an instrument candidate to fill the gap of more than thirty years of lack of measurements. The GPD, in the focus of a telescope, will increase the sensitivity of orders of magnitude. Moreover, since it can measure the energy, the position, the arrival time and the polarization angle of every single photon, allows to perform polarimetry of subsets of data singled out from the spectrum, the light curve or the image of source. The GPD has an intrinsic very fine imaging capability and in this work we report on the calibration campaign carried out in 2012 at the PANTER X-ray test facility of the Max-Planck-Institut f\"ur extraterrestrische Physik of Garching (Germany) in which, for the first time, we coupled it to a JET-X optics module with a focal length of 3.5 m and an angular resolution of 18 arcsec at 4.5 keV. This configuration was proposed in 2012 aboard the X-ray Imaging Polarimetry Explorer (XIPE) in response to the ESA call for a small mission. We derived the imaging and polarimetric performance for extended sources like Pulsar Wind Nebulae and Supernova Remnants as case studies for the XIPE configuration, discussing also possible improvements by coupling the detector with advanced optics, having finer angular resolution and larger effective area, to study with more details extended objects.Comment: Accepted for publication in The Astrophysical Journal Supplemen

    Energy-windowed, pixellated X-ray diffraction using the Pixirad CdTe detector

    Get PDF
    X-ray diffraction (XRD) is a powerful tool for material identification. In order to interpret XRD data, knowledge is required of the scattering angles and energies of X-rays which interact with the sample. By using a pixellated, energy-resolving detector, this knowledge can be gained when using a spectrum of unfiltered X-rays, and without the need to collimate the scattered radiation. Here we present results of XRD measurements taken with the Pixirad detector and a laboratory-based X-ray source. The cadmium telluride sensor allows energy windows to be selected, and the 62 ÎŒm pixel pitch enables accurate spatial information to be preserved for XRD measurements, in addition to the ability to take high resolution radiographic images. Diffraction data are presented for a variety of samples to demonstrate the capability of the technique for materials discrimination in laboratory, security and pharmaceutical environments. Distinct diffraction patterns were obtained, from which details on the molecular structures of the items under study were determined

    INFN Camera demonstrator for the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array is a world-wide project for a new generation of ground-based Cherenkov telescopes of the Imaging class with the aim of exploring the highest energy region of the electromagnetic spectrum. With two planned arrays, one for each hemisphere, it will guarantee a good sky coverage in the energy range from a few tens of GeV to hundreds of TeV, with improved angular resolution and a sensitivity in the TeV energy region better by one order of magnitude than the currently operating arrays. In order to cover this wide energy range, three different telescope types are envisaged, with different mirror sizes and focal plane features. In particular, for the highest energies a possible design is a dual-mirror Schwarzschild-Couder optical scheme, with a compact focal plane. A silicon photomultiplier (SiPM) based camera is being proposed as a solution to match the dimensions of the pixel (angular size of ~ 0.17 degrees). INFN is developing a camera demonstrator made by 9 Photo Sensor Modules (PSMs, 64 pixels each, with total coverage 1/4 of the focal plane) equipped with FBK (Fondazione Bruno Kessler, Italy) Near UltraViolet High Fill factor SiPMs and Front-End Electronics (FEE) based on a Target 7 ASIC, a 16 channels fast sampler (up to 2GS/s) with deep buffer, self-trigger and on-demand digitization capabilities specifically developed for this purpose. The pixel dimensions of 6×66\times6 mm2^2 lead to a very compact design with challenging problems of thermal dissipation. A modular structure, made by copper frames hosting one PSM and the corresponding FEE, has been conceived, with a water cooling system to keep the required working temperature. The actual design, the adopted technical solutions and the achieved results for this demonstrator are presented and discussed.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Sustainable Intensification of Cassava Production towards Food Security in the Lomami Province (DR Congo): Role of Planting Method and Landrace

    Get PDF
    Cassava is a mainstay crop for food security in Africa, its tubers being a large source of carbohydrates for the human diet. In some regions (e.g., the Democratic Republic of the Congo; DRC), leaves are also consumed as a source of proteins, vitamins, and minerals. Cassava adapts well to a range of soil-climate conditions and requires low inputs, yet yields are often unsatisfactory because of failures in disseminating improved genotypes and agricultural practices. The aim of this study was to test the effect of (i) seedbed preparation for planting cassava (i.e., flat, mounds, and ridges) and (ii) local landraces (i.e., Kakuanga, Kasongoy, Kasonie, Ndunda, and Ngoymuamba) on yield components and their nutritional quality in the Lomami province (DRC). In-depth measurements of yield components were performed, including the number of tubers and stems per plant, leaf biomass, stem biomass, root yield, and peeling yield. Tubers and leaves were also analyzed for chemical composition. Our results demonstrated that mound and ridge seedbed preparations may highly increase tuber yield (+32–68%) compared with flat. This is not the case for leaves and stems, which were not affected. The Ngoymuamba landrace showed a tuber yield about three times larger than Ndunda, which represented the common productivity values (5–8 Mg ha-1). No effect of seedbed preparation was observed and only minor differences between landraces were observed for the chemical composition of roots and leaves. We concluded that selecting the best-performing seedbed preparations landraces could have a significant potential for achieving in a relatively short time the goal of “Zero Hunger” and improving the diet in the DRC

    The Small Satellite-Based, Imaging X-Ray Polarimeter Explorer (IXPE) Mission

    Get PDF
    The Imaging X-ray Polarimeter Explorer (IXPE) focuses on high energy astrophysics in the 2—8 keV x-ray band. IXPE is designed to explore general relativistic and quantum physics effects of gravity, energy, electric and magnetic fields at extreme limits. IXPE, a NASA Small Explorer (SMEX) Mission, will add new dimensions to on-orbit x-ray science: polarization degree, polarization angle and extended object polarization imaging. Polarization uniquely probes physical anisotropies that are not otherwise measurable—ordered magnetic fields, aspheric matter distributions, or general relativistic coupling to black-hole spin. Detailed imaging enables the specific properties of extended x-ray sources to be differentiated. The IXPE Observatory consists of spacecraft and payload modules built up in parallel to form the Observatory during system integration and test. The payload includes three polarization-sensitive, x-ray detector arrays paired with three x-ray mirror module assemblies (MMA). A deployable boom provides the correct separation (focal length) between the detector units and MMAs. Currently, the boom has been delivered, all four detectors units (DU) are complete, the detectors service unit (DSU) is complete, instrument system testing has been completed (DSU with 3 DUs), three of four MMAs is built and all spacecraft components except the solar array have been delivered along with the spacecraft and payload structures. Payload and spacecraft integration and test (I&T) started in March 2020. This paper overviews the flight segment (the Observatory, payload, and spacecraft implementation concepts) with emphasis on the build status and summarizes the launch segment. Launch is planned to occur on a Falcon 9 launch vehicle during Summer 2021. The paper summarizes the impacts of switching from the ‘design-to baseline’ of Pegasus XL to the selected launch vehicle for flight, Falcon 9. COVID-19 impacts to the Project are also summarized. The paper will close with a summary of the mission development status. The Project is firmly into the build phase for both the spacecraft and payload and rapidly approaching Observatory I&T

    Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV

    Get PDF
    We present the results of our analysis of cosmic-ray electrons using about 8 million electron candidates detected in the first 12 months on-orbit by the Fermi Large Area Telescope. This work extends our previously-published cosmic-ray electron spectrum down to 7 GeV, giving a spectral range of approximately 2.5 decades up to 1 TeV. We describe in detail the analysis and its validation using beam-test and on-orbit data. In addition, we describe the spectrum measured via a subset of events selected for the best energy resolution as a cross-check on the measurement using the full event sample. Our electron spectrum can be described with a power law ∝E−3.08±0.05\propto {\rm E}^{-3.08 \pm 0.05} with no prominent spectral features within systematic uncertainties. Within the limits of our uncertainties, we can accommodate a slight spectral hardening at around 100 GeV and a slight softening above 500 GeV.Comment: 20 pages, 23 figures, 2 tables, published in Physical Review D 82, 092004 (2010) - contact authors: C. Sgro', A. Moisee

    The evolution of the Australian ‘ndrangheta. An historical perspective

    Get PDF
    This paper explores the phenomenon of the ‘ndrangheta – a criminal organisation from Calabria, South of Italy and allegedly the most powerful among the Italian mafias – through its migrating routes. In particular, by focusing on the peculiar case of Australia, the paper aims to show the overlapping of migrating flows with criminal colonisation, which has proven to be a strategy of this particular mafia. The paper uses the very thin literature on the subject alongside official reports and newspaper articles on migration and crime, mainly from Italian sources, to trace an historical journey on the migration of people from Calabria to Australia in various moments of the last century. The aim is to present the evolution and growth of Calabrian clans in Australia. The topic is largely unexplored and is still underreported among Australian institutions and scholars, which is why the paper chooses an historical approach to describe the principal paths in this very new field of research
    • 

    corecore