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Abstract: X-ray diffraction (XRD) is a powerful tool for material identification. In order to interpret
XRD data, knowledge is required of the scattering angles and energies of X-rays which interact with
the sample. By using a pixellated, energy-resolving detector, this knowledge can be gained when
using a spectrum of unfiltered X-rays, and without the need to collimate the scattered radiation.
Here we present results of XRD measurements taken with the Pixirad detector and a laboratory-
based X-ray source. The cadmium telluride sensor allows energy windows to be selected, and the
62 μm pixel pitch enables accurate spatial information to be preserved for XRD measurements, in
addition to the ability to take high resolution radiographic images. Diffraction data are presented for
a variety of samples to demonstrate the capability of the technique for materials discrimination in
laboratory, security and pharmaceutical environments. Distinct diffraction patterns were obtained,
from which details on the molecular structures of the items under study were determined.

Keywords: Detection of contraband and drugs, detection of explosives, inspection with X-rays

1Corresponding author.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/79557789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:d.oflynn@ucl.ac.uk


Contents

1 Introduction 1

2 Experimental detail 3

3 Results 4

4 Conclusion 8

1 Introduction

X-ray diffraction (XRD) occurs when X-rays are coherently scattered from the molecular layers
of a material and subsequently constructively interfere. For a molecular layer spacing of d, the
scattering angles 2θ at which this interference can be seen are given by Bragg’s law:

nλ = 2d sin θ (1.1)

where λ is the X-ray wavelength. The nature of the interference pattern gives detailed informa-
tion on molecular structure, and thus is a highly useful technique for materials identification, giving
complementary information to a traditional X-ray transmission or dual-energy image [1–3]. XRD
is a non-destructive method, and the ability of X-rays to pass through barriers gives an advantage
over other molecular analysis methods in cases where the materials of interest are obscured, for
example when samples are inside packaging, or in security scenarios. In order to retrieve the X-ray
interference information, both the energy (wavelength) and the scattering angle of the X-rays must
be well defined. This can be achieved either by fixing the energy and measuring the angular depen-
dency of the scattered radiation (angular dispersive XRD or ADXRD) or by fixing the scattering
angle and measuring the energy dependency or the scattered radiation (EDXRD) [4–6].

In the case of ADXRD, the X-ray energy can be defined by the use of a synchrotron or, in the
laboratory, by filtering a standard X-ray source. The scattering angle is defined by collimating the
incident and scattered X-rays, and the angular dependency is observed by a rotation of the X-ray
source and detector about the sample; alternatively the uncollimated scattered field can be measured
with a pixellated, area sensitive sensor. For EDXRD, the incident and scattered X-rays are also
collimated, but the geometry is kept fixed. A broad X-ray spectrum is incident upon the sample, and
an energy-resolving detector is used to isolate energy windows and produce XRD data. Recently,
a pixellated diffraction (PixD) method which combines features of both ADXRD and EDXRD was
developed, allowing the use of a polychromatic X-ray source and uncollimated scattered X-rays
to be detected, giving a large increase in counting efficiency [7, 8]. This technique utilised the
pixellated, energy-resolving HEXITEC detector [9–11], which enabled both spatial and spectral
diffraction information to be preserved simultaneously.
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In this work, a similar experimental approach to PixD was applied using the Pixirad PIXI-III
detector [12–15]. The Pixirad detector has an area of 31.7×25.0 mm2, containing a 512× 402 pixel
array with 62 μm pitch. The version of the detector used for this work has a 750 μm thick cadmium
telluride (CdTe) X-ray sensor, and is capable of performing energy windowing with user-defined
limits. The CdTe has a very high detection efficiency at this thickness for X-ray energies under
100 keV, and, unlike germanium-based detectors, CdTe-based detectors can be operated without
the requirement of cooling to cryogenic temperatures. The energy windowing is achieved by
setting thresholds below which all photon events are discarded; if two such thresholds are set at
different energies then their difference represents the detected photons with energies between the
two thresholds. Photons with energy falling within the selected window are counted directly in the
ASIC pixels, so that only one reading is required to get the windowed counts. The energy resolution
of the detector is approximately 4 keV at 60 keV. An advantage of this energy windowing approach
is the ability to select an energy region of interest, rather than being limited by the emission lines
of the X-ray spectrum (as is the case in a typical diffractometer). A practical application of this
technique is the selection of an energy high enough for transmission XRD measurements through
samples of several millimetres thickness. Additionally, since the energy selection is performed by
the detector itself, the issue of motion-sensitive monochromator alignment is negated.

It is shown here that by using the Pixirad detector to measure scattered X-rays within a selected
energy window, pixellated diffraction information can be preserved with the use of a polychromatic
incident X-ray beam and no collimation between the sample and detector. Diffraction data for a
variety of samples is presented to demonstrate the material specificity of the PixD technique using
Pixirad. The small pixel size of the detector, and its ability to record a primary beam flux is
demonstrated with an image of a packet of paracetamol tablets; the diffraction data for one of these
tablets is also presented.

Al+Pb collimator
(0.5 mm pinhole)

Sample

Pixirad
detector

Scattered
X-rays

6 mm

3 mm

116 mm 51 mm 113 mm

6 mm

X-ray source
(5.5 mm focal spot)

Figure 1. Schematic diagram of the experimental setup used for the pixellated diffraction measurements in
Figures 4 and 5.
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2 Experimental detail

Initial measurements to test the energy-windowing capability of the detector were carried out with
the X-ray beam aligned with the centre of the detector, and the tube operated at 40 keV. A schematic
of the experimental setup for subsequent measurements on all samples is shown in Figure 1. The
X-ray source used for these measurements was a Thales THX 160 1055 with a 5.5 mm focal spot
size, operated at 56 kV and 6.0 mA. The incident X-rays were collimated by two lead sheets of
3 mm thickness each with a 0.5 mm diameter hole, separated by 116 mm, to give a pencil beam
of approximately 1 mm diameter at the sample. For all measurements the Pixirad detector was
positioned behind the sample, such that diffraction measurements were taken in transmission mode.
The detector was operated at a temperature of −30 ◦C, with a voltage of 600 V applied to the
CdTe sensor. The primary X-ray beam was positioned 2 mm outside the corner of the detector to
ensure that only scattered photons were detected. Background scatter with no sample in place was
separately recorded, and subsequently subtracted from the sample diffraction data. Diffraction data
were collected with an energy window of 22-24.5 keV. This energy window was selected to show
diffraction across the face of the detector based on the geometry of the system, the incident X-ray
spectrum, and the intermolecular spacings of interest for the samples under study. Each pixel of the
detector is sensitive to a particular scattering angle due to the geometry of the system, neglecting
the effects of sample thickness [16]. Taking the centre of the selected energy window, a conversion
to momentum transfer (x) space was made for each pixel using the relation

x =
1
λ

sin θ (2.1)

The momentum transfer coverage across the detector face is shown in Figure 2(a) and the
weighting of momentum transfer sensitivity (i.e. how many pixels cover each region of the scattering
angle range) is shown in Figure 2(b).

The samples studied for this work were caffeine and hexamine powder; plastic explosive
samples C4, Semtex 1A and Semtex H; a sheet of aluminium and a paracetamol tablet both outside
and inside its packaging. This range of materials have the common feature of containing components
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Figure 2. (a) Momentum transfer coverage of the detector face based on the scattering angles observed at
each pixel due to the experimental geometry and an X-ray photon energy of 23.25 keV - the centre of the
22-24.5 keV energy window. (b) The momentum transfer weighting which arises due to the experimental
setup.
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Figure 3. Preliminary experiments demonstrating the energy-windowing capability of Pixirad for recording
diffraction data from a polycrystalline caffeine sample. The bright central spot is due to the incident X-ray
beam.

with regular crystal/molecular ordering (and thus give diffraction patterns from which the ordering
can be determined), whilst being in distinct physical forms. In particular, the explosives and the
paracetamol were selected so as to demonstrate the potential for this technique to non-destructively
identify materials of interest which are often obscured by barriers and thus cannot be examined by
conventional methods without physically removing these barriers. Each sample was 3 mm thick,
with the exception of the 3.5 mm paracetamol tablet. The thicknesses used gave a compromise
between the amount of XRD signal, and the X-ray attenuation and broadening of diffraction peaks
seen for thicker samples.

For the transmission image of the paracetamol packet, all collimation was removed from the
system to give complete beam coverage of the detector. The packet was placed within 5 mm of the
detector to mitigate blurring due to the large focal spot size. The image presented is a composite
4 × 4 grid; each frame was acquired with a 117 ms exposure with X-ray tube settings of 56 kV and
0.3 mA, with an energy window of 18-56 keV, and flat-field corrected.

3 Results

Initial characterisation measurements were taken of a polycrystalline caffeine sample, with the
collimated X-ray beam aligned with the centre of the detector. As described by Bragg’s law, the
diffraction can be seen to spread radially from the primary beam position, along lines of constant
angle. When an energy window of 8-12 keV is selected, the two expected diffraction rings from
the caffeine can be seen [17, 18], although rather than two distinct rings, there appears to be a
triplet effect on each ring (Figure 3(a)). These additional rings were assumed to be a result of the
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Figure 4. Pixellated diffraction patterns recorded for each sample with X-ray tube settings of 56 kV and
6.0 mA, and an energy window of 22-24.5keV. The acquisition times used were 4425 s for caffeine, 600 s for
hexamine, C4, Semtex 1A and Semtex H, and 60 s for paracetamol and aluminium. The data are corrected
for a background reading taken with no sample in place and an acquisition time of 3600 s.
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Figure 5. Momentum transfer plots as calculated from the diffraction data shown in Figure 3. Paracetamol
data are shown for the tablet both outside and inside the blister packaging (made up of aluminium foil and
plastic). Attenuation corrected data is also given for the aluminium sample.
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relatively strong characteristic L-alpha, L-beta and L-gamma tungsten emissions from the X-ray
source at energies of 8.34 keV, 9.96 keV and 11.28 keV, respectively. In order to mitigate this
tripling of the diffraction rings, another measurement was taken with a narrower energy window of
9-10 keV. In this case, the contribution of the L-alpha and L-gamma X-ray lines are not recorded,
as can be seen in the diffraction pattern in Figure 3(b). A confirmation of the energy windowing
for a different energy range of 21-22 keV is given in Figure 3(c), where it can be seen that the
diffraction rings are decreasing in radius (i.e. decreased scattering angle), as expected from Bragg’s
law. A demonstration of the necessity for this strict energy windowing for diffraction measurements
is shown in Figures 3(d) and 3(e), where wide energy ranges of 12-40 keV and 22-40 keV result
in the sharp diffraction rings becoming blurred out due to the sensitivity to diffraction across the
Bremsstrahlung continuum.

Further measurements of energy-windowed pixellated diffraction were taken with the experi-
mental setup as shown in Figure 1. The diffraction patterns recorded for seven different samples are
shown in Figure 4. The two Debye-Scherrer ring sections seen for caffeine represent constructive
interference of X-rays in the 22-24.5 keV energy range from caffeine d-spacings of 7.53 Å, 7.40 Å,
3.37 Å and 3.30 Å. The first two and latter two spacings are not individually resolved [8]. Rings
are seen due to the fact that the caffeine sample was a fine powder, and as such the primary X-ray
beam was incident upon a large number of crystallites with random orientations about the incident
beam axis. Converting this data to momentum transfer space, the rings are seen as two peaks in
intensity (Figure 5). The position of these peaks can be used to infer inter-molecular spacings by a
combination of equations 1.1 and 2.1 to give d = 1/2x. The observed d-spacings are in agreement
with those found in the literature [17, 18].

The larger grain hexamine sample instead shows diffraction in the form of spots arranged
radially. The corresponding momentum transfer plot shows sharp peaks of much greater intensity
than those for caffeine, and appears more similar to diffraction data from a single crystal sample. In
this case, the hexamine crystallites were approximately 1 mm in diameter, of a comparable size to
that of the X-ray beam. The two primary peaks in intensity at 0.96 nm−1 and 1.08 nm−1 correspond
to d-spacings of 5.21 Å and 4.63 Å, respectively.

The three plastic explosive compounds contain different combinations of explosive compounds;
C4 contains RDX, Semtex 1A contains PETN, and Semtex H contains a mixture of both RDX and
PETN. The nature of their respective pixellated diffraction images in Figure 4 implies a granular
nature to these compounds with grain sizes likely larger than those of the caffeine sample but smaller
than those of the hexamine. The momentum transfer spectrum for Semtex H shows features which
are individually seen in those of C4 and Semtex 1A, due to the presence of both RDX and PETN
(specifically, multiple RDX peaks at 0.42 nm−1, 0.72 nm−1, 1.02 nm−1; and the main PETN peak at
1.36 nm−1).

The features seen in the diffraction data for the paracetamol tablet in Figure 2 correspond with
the crystal structure of Form I paracetamol, notably the smaller peak at 0.9 nm−1 (d-spacings of
0.53 Å and 0.57 Å) and the broader peak centred at 1.4 nm−1 (d-spacings of 0.34 Å, 0.36 Å and
0.38 Å) [19]. In order to show the capability of this XRD technique to probe molecular structure
through barriers, the diffraction data of the paracetamol tablet inside the blister packet is also shown
in Figure 2. There is a slight increase in signal at 2.1 nm−1 which is believed to be due to diffraction
from the aluminium foil present in the packaging. The slight shift in momentum transfer of the
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Figure 6. Radiographic image of the paracetamol packet inside the box, taken with the Pixirad detector.
The figure is a 4 × 4 stitched image, with each constituent image being acquired for 117 ms, with X-ray tube
settings of 56 kV and 0.5 mA, and an energy window of 18-56keV

main peak is likely due to a slight error in sample positioning (of the order of 1 mm). The imaging
capability of the Pixirad detector is demonstrated for the paracetamol tablets inside the blister
packaging and box in Figure 6.

The previously reported XRD data for aluminium show peaks corresponding to 2.11 nm−1,
2.48 nm−1, 3.48 nm−1, and 4.07 nm−1 - the (111), (200), (220) and (311) reflections, respectively
[20]. In the pixellated diffraction data presented here, the (111) peak is clearly seen, although the
latter three are outside the momentum transfer range of the measurement - with the possible exception
of a shoulder in the data at 2.5 nm−1. The tailing off of the diffraction spectrum for aluminium
occurs at a lower momentum transfer value than for the other samples (∼2.6 nm−1 compared with
3.2 nm−1). This is assumed to be due to the additional attenuation from the relatively high-Z /density
material for photons in the 22-24.5 keV range, which is enhanced when scattering at higher angles
(i.e. higher momentum transfers) since more material is in the beam path on average.

A correction for the aluminium attenuation was made by rescaling the background data before
subtraction by a factor of exp(−μE t), where t is the thickness of the aluminium plate (0.3 cm) and
μE is the linear attenuation coefficient of aluminium at 23.25 keV (5.988 cm−1). The value of μE
was obtained from the XCOM database [21] using an aluminium density of 2.7 g cm−3.

4 Conclusion

This work has demonstrated the capability of the Pixirad detector to measure a pixellated diffraction
signal from an unfiltered, polychromatic X-ray source, giving a through-barrier probe of molecular
structure. The CdTe detector material has a high detection efficiency across the energy range of
interest for this application, and the readout electronics of Pixirad give rise to energy resolution and
the ability to correct for charge-sharing effects. These factors combine to give the capability to select
a user-defined energy window of sensitivity. Without energy-windowing, the coherent diffraction
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signal would be spread out spatially across the detector due to the X-ray emission spectrum, and
prominent features relating to crystal or molecular structures would be lost. Alternatively, if the
incident beam was filtered to be monoenergetic, a large reduction in X-ray flux, and thus poorer
counting statistics, would have resulted. The spatial resolution afforded by the detector pixels
enables angular scatter information to be preserved without the need for collimation of the scattered
beam - this is true provided the sample thickness remains of the order of several millimetres [16]
- and as such the counting statistics of the system are greatly improved with respect to previous
EDXRD systems based on a single-element detector. Additionally, further information on the grain
size present in the sample is preserved with the diffraction image, as can be seen by comparing the
Debye-Scherrer rings in fine grain caffeine and distinct spots in large grain hexamine [7, 8]. The
peak widths for this diffraction technique are wider than those in diffractometer scans. The main
factors contributing to the peak broadening are uncertainties in the geometry of the system (due to
incident beam size and divergence, and sample thickness), and the energy resolution of the detector.

Due to the small pixel pitch of the Pixirad detector, it can also be used to take high-quality
radiographic images. The option of energy-windowing gives additional potential applications
for complementary multispectral imaging and XRD measurements using the same detector. The
XRD experiments performed in this work required a collimated incident beam, it would be time-
consuming to scan an entire sample in this manner. A practically implemented materials identifi-
cation system could involve a system where an initial X-ray image of an object is taken, from which
regions of interest could be identified for further analysis with XRD.
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