30 research outputs found

    Sub-millennial climate variability from high-resolution water isotopes in the EPICA Dome C ice core

    Get PDF
    The EPICA Dome C (EDC) ice core provides the longest continuous climatic record, covering the last 800 000 years (800 kyr). A unique opportunity to investigate decadal to millennial variability during past glacial and interglacial periods is provided by the high-resolution water isotopic record (δ18O and δD) available for the EDC ice core. We present here a continuous compilation of the EDC water isotopic record at a sample resolution of 11 cm, which consists of 27 000 δ18O measurements and 7920 δD measurements (covering, respectively, 94 % and 27 % of the whole EDC record), including published and new measurements (2900 for both δ18O and δD) for the last 800 kyr. Here, we demonstrate that repeated water isotope measurements of the same EDC samples from different depth intervals obtained using different analytical methods are comparable within analytical uncertainty. We thus combine all available EDC water isotope measurements to generate a high-resolution (11 cm) dataset for the past 800 kyr. A frequency decomposition of the most complete δ18O record and a simple assessment of the possible influence of diffusion on the measured profile shows that the variability at the multi-decadal to multi-centennial timescale is higher during glacial than during interglacial periods and higher during early interglacial isotopic maxima than during the Holocene. This analysis shows as well that during interglacial periods characterized by a temperature optimum at the beginning, the multi-centennial variability is strongest over this temperature optimum.publishedVersio

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Stable isotopes in water from Lake Locknesjön, Sweden collected between 2013 and 2018

    No full text
    This dataset presents measurements of stable isotopes in water (δD and δ18O) from Lake Locknesjön, Sweden. Water samples were collected between 2013 and 2018 and were taken from different depths down to 20 m in the lake, as well as from the lake's main tributary and its outflow. Depending on the depth, the water samples were collected from the shore, by a diving team, or with a UWITEC gravity corer. Measurements of stable isotopes in water samples were conducted at the Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Gif-sur-Yvette, France. The δ18O was measured with a Finnigan MAT252 isotope ratio mass spectrometer with a precision of ±0.05‰ (two standard deviations). The δD was measured with a Picarro Analyzer (Cavity Ring-Down Spectroscopy) with a precision of±0.7‰ (one standard deviation)

    Stable isotopes in recent biogenic carbonates from Lake Locknesjön, Sweden collected in 2018

    No full text
    This dataset presents measurements of stable isotopes in biogenic carbonates (δ13C and δ18O) from Lake Locknesjön, Sweden. Carbonate samples were collected in 2018 from different lacustrine organisms along a water depth gradient from 0 to 8 m depth: encrustations from the calcifying algae Chara hispida, valves from the bivalve mollusk Pisidium sp., and valves from two species of ostracods, Candona candida and Candona neglecta. Adult specimen and different juvenile stages of the ostracods were sampled. The carbonate samples originate from living organisms, i.e. which were alive at the time of sampling in 2018, and from their subfossil remains in the uppermost centimeter of the lake sediments. The carbonate samples were collected by a diving team. Carbonate isotope measurements were carried out at MARUM, Bremen, Germany, using a ThermoFisher Scientific 253plusgas isotope ratio mass spectrometer with a Kiel IV automated carbonate preparation device. The standard deviation of the reference standards over the measurement period was 0.06‰ for δ18O and 0.03‰ for δ13C

    A modern snapshot of the isotopic composition of lacustrine biogenic carbonates – records of seasonal water temperature variability

    No full text
    International audienceAbstract. Carbonate shells and encrustations from lacustrine organisms provide proxy records of past environmental and climatic changes. The carbon isotopic composition (δ13C) of such carbonates depends on the δ13C of dissolved inorganic carbon (DIC). Their oxygen isotopic composition (δ18O) is controlled by the δ18O of the lake water and by water temperature during carbonate precipitation. Lake water δ18O, in turn, reflects the δ18O of atmospheric precipitation in the catchment area, water residence time and mixing, and evaporation. A paleoclimatic interpretation of carbonate isotope records requires a site-specific calibration based on an understanding of these local conditions. For this study, samples of different biogenic carbonate components and water were collected in the littoral zone of Lake Locknesjön, central Sweden (62.99∘ N, 14.85∘ E, 328 ma.s.l.) along a water depth gradient from 1 to 8 m. Carbonate samples of living organisms and subfossil remains in surface sediments were taken from the calcifying alga Chara hispida, from bivalve mollusks of the genus Pisidium, and from adult and juvenile instars of two ostracod species, Candona candida and Candona neglecta. Our results show that neither the isotopic composition of carbonates nor the δ18O of water vary significantly with water depth, indicating a well-mixed epilimnion. The mean δ13C of Chara hispida encrustations is 4 ‰ higher than the other carbonates. This is due to fractionation related to photosynthesis, which preferentially incorporates 12C into the organic matter and increases the δ13C of the encrustations. A small effect of photosynthetic 13C enrichment in DIC is seen in contemporaneously formed valves of juvenile ostracods. The largest differences in the mean carbonate δ18O between species are caused by vital offsets, i.e., the species-specific deviations from the δ18O of inorganic carbonate which would have been precipitated in isotopic equilibrium with the water. After subtraction of these offsets, the remaining differences in the mean carbonate δ18O between species can mainly be attributed to seasonal water temperature changes. The lowest δ18O values are observed in Chara hispida encrustations, which form during the summer months when photosynthesis is most intense. Adult ostracods, which calcify their valves during the cold season, display the highest δ18O values. The seasonal and interannual variability in lake water δ18O is small (∼ 0.5 ‰) due to the long water residence time in the lake. Seasonal changes in the temperature-dependent fractionation are therefore the dominant cause of carbonate δ18O differences between species when vital offsets are corrected. Temperature reconstructions based on paleotemperature equations for equilibrium carbonate precipitation using the mean δ18O of each species and the mean δ18O of lake water are well in agreement with the observed seasonal water temperature range. The high carbonate δ18O variability of samples within a species, on the other hand, leads to a large scatter in the reconstructed temperatures based on individual samples. This implies that care must be taken to obtain a representative sample size for paleotemperature reconstructions

    The glacial inception as recorded in the NorthGRIP Greenland ice core: timing, structure and associated abrupt temperature

    Get PDF
    International audienceThe mechanisms involved in the glacial inception are still poorly constrained due to a lack of high resolution and cross-dated climate records at various locations. Using air isotopic measurements in the recently drilled NorthGRIP ice core, we show that no evidence exists for stratigraphic disturbance of the climate record of the last glacial inception (∼123–100 kyears BP) encompassing Dansgaard–Oeschger events (DO) 25, 24 and 23, even if we lack sufficient resolution to completely rule out disturbance over DO 25. We quantify the rapid surface temperature variability over DO 23 and 24 with associated warmings of 10±2.5 and 16±2.5°C, amplitudes which mimic those observed in full glacial conditions. We use records of δ18O of O2 to propose a common timescale for the NorthGRIP and the Antarctic Vostok ice cores, with a maximum uncertainty of 2,500 years, and to examine the interhemispheric sequence of events over this period. After a synchronous North–South temperature decrease, the onset of rapid events is triggered in the North through DO 25. As for later events, DO 24 and 23 have a clear Antarctic counterpart which does not seem to be the case for the very first abrupt warming (DO 25). This information, when added to intermediate levels of CO2 and to the absence of clear ice rafting associated with DO 25, highlights the uniqueness of this first event, while DO 24 and 23 appear similar to typical full glacial DO events

    Is the Isotopic Composition of Precipitation a Robust Indicator for Reconstructions of Past Tropical Cyclones Frequency? A Case Study on Réunion Island From Rain and Water Vapor Isotopic Observations

    Get PDF
    International audienceTropical cyclones (TCs) are among the natural hazards responsible for the highest human and economic losses. According to the WMO (World Meteorological Organization), 7 of the 10 costliest natural disasters in the past 50 years are TCs, including three cyclones in 2017: Harvey (which caused nearly 97billionindamage),Maria(nearly97 billion in damage), Maria (nearly 70 billion) and Irma (nearly 60billion)(WMO,2021).Thesethreecyclonesaloneaccountedfor3560 billion) (WMO, 2021). These three cyclones alone accounted for 35% of the total economic losses of the top 10 disasters around the world from 1970 to 2019. The cyclone Katrina in 2005 stands out as the costliest disaster with nearly 164 billion in losses. In terms of human losses, the 10 deadliest natural disasters between 1970 and 2019 include 3 TCs: in Bangladesh in 1970 (cyclone Bhola) and in 199
    corecore