67 research outputs found

    Characterization of dissolved organic matter in Lake Superior and its watershed using ultrahigh resolution mass spectrometry

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Organic Geochemistry 43 (2012): 1-11, doi:10.1016/j.orggeochem.2011.11.007.With the advent of ultrahigh resolution mass spectrometry, recent studies have begun to resolve molecular-level relationships between terrestrial and aquatic dissolved organic matter (DOM) in rivers, estuaries, mangrove swamps and their receiving oceans and lakes. Here, we extend ultrahigh resolution mass spectrometry techniques to Lake Superior, the largest freshwater lake in the world by area. Solid-phase extracted samples from the western arm of the lake and its watershed, including swamp, creek, river, lake-river confluence and offshore lake sites were compared using electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Results were analyzed using cluster analysis and van Krevelen diagrams. Chemical similarity appears related to hydrological proximity, terrestrial impact and flow conditions. For example, higher and lower flow samples from the same stream differ from one another. Toivola Swamp, Lake Superior, and the south shore river have diverse arrays of unique molecular formulae.relative to the north shore river and stream sampled in this data set. Lake Superior’s unique elemental formulae, relative to its watershed samples, are primarily in the lignin-like and reduced hydrocarbon regions of van Krevelen diagrams. ESI-amenable Lake Superior DOM also has a higher proportion of formulae containing nitrogen or sulfur relative to the other samples. The degree of overlap among formulae within our data set is consistent with previous ESI FT-ICR-MS characterization of terrestrial, estuarine and marine OM. There appears to be a conserved portion of formulae across natural OM samples, perhaps because these compounds are intrinsically refractory or because they are commonly generated as products of natural reworking processes.This study was supported in part by NSF grant OCE-0825600 (to E.C.M.). C.S. was supported in part by a National Science Foundation Graduates in K- 12 Education grant to the University of Minnesota Duluth. Travel support was provided to C.S. through the travel fund at the WHOI FT-MS facility which was funded by the WHOI Director of Research and NSF grant OCE- 0751897

    A Preliminary Examination of an in situ Dual Dye Approach to Measuring Light Fluxes in Lotic Systems

    Get PDF
    Light is a critical parameter in aquatic ecosystems, affecting primary production and in situ photochemistry. However, measuring light exposure for suspended particles or dissolved components in a dynamic water column can be challenging with existing Eulerian approaches. Here, we assess the simultaneous deployment of two dyes differing in photolability (rhodamine WT and fluorescein) as a Lagrangian measure of sunlight exposure in a lotic system. Fluorescein is sensitive to light exposure; rhodamine WT is relatively photostable. We examined dye fluorescence at various pH, salinity, and temperature conditions. We also tested dye photolability as a function of pH and wavelength range. In conjunction with this laboratory work, we performed initial field testing of the dual-dye approach in a stream on the north shore of Lake Superior, USA. Irradiation of the dyes using long-pass filters identified wavelengths \u3e= 420 nm as responsible for the vast majority of the loss of fluorescein fluorescence, with rhodamine appearing relatively photostable in these short-term studies across the wavelength ranges tested. Dye response to irradiation is pH-sensitive; the dual-dye approach will require additional calibration for acidic or basic waters and should be used with caution in aquatic systems undergoing strong (several pH unit) changes in pH. Field testing showed that the fluorescein to rhodamine WT ratio decreased approximately linearly with light exposure. The dual-dye methodology shows promise as an in situ light sensor applicable to water column species in lotic systems if temperature is recorded, and the pH range is measured and relatively stable (e.g., varies by \u3c 1 unit)

    Constraining the sources and cycling of dissolved organic carbon in a large oligotrophic lake using radiocarbon analyses

    Get PDF
    © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 208 (2017): 102-118, doi:10.1016/j.gca.2017.03.021.We measured the concentrations and isotopic compositions of solid phase extracted (SPE) dissolved organic carbon (DOC) and high molecular weight (HMW) DOC and their constituent organic components in order to better constrain the sources and cycling of DOC in a large oligotrophic lacustrine system (Lake Superior, North America). SPE DOC constituted a significant proportion (41-71 %) of the lake DOC relative to HMW DOC (10-13%). Substantial contribution of 14C-depleted components to both SPE DOC (Δ14C = 25 to 43‰) and HMW DOC (Δ14C = 22 to 32‰) was evident during spring mixing, and depressed their radiocarbon values relative to the lake dissolved inorganic carbon (DIC; Δ14C ~ 59‰). There was preferential removal of 14C-depleted (older) and thermally recalcitrant components from HMW DOC and SPE DOC in the summer. Contemporary photoautotrophic addition to HMW DOC was observed during summer stratification in contrast to SPE DOC, which decreased in concentration during stratification. Serial thermal oxidation radiocarbon analysis revealed a diversity of sources (both contemporary and older) within the SPE DOC, and also showed distinct components within the HMW DOC. The thermally labile components of HMW DOC were 14C-enriched and are attributed to heteropolysaccharides (HPS), peptides/amide and amino sugars (AMS) relative to the thermally recalcitrant components reflecting the presence of older material, perhaps carboxylic-rich alicyclic molecules (CRAM). The solvent extractable lipid-like fraction of HMW DOC was very 14C-depleted (as old as 1270-2320 14C years) relative to the carbohydrate-like and protein-like substances isolated by acid hydrolysis of HMW DOC. Our data constrain relative influences of contemporary DOC and old DOC, and DOC cycling in a modern freshwater ecosystem.This work was funded by the National Science Foundation OCE 0825600 to E.C.M. and J.P.W., a graduate student internship fellowship to P.K.Z by National Ocean Sciences Accelerator Mass Spectrometry Facility (OCE 0753487), and the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution to P.K.Z, with funding provided by the National Ocean Sciences Accelerator Mass Spectrometry Facility (OCE 0753487)

    Absorption Spectral Slopes and Slope Ratios as Indicators of Molecular Weight, Source, and Photobleaching of Chromophoric Dissolved Organic Matter

    Get PDF
    A new approach for parameterizing dissolved organic matter ( DOM) ultraviolet-visible absorption spectra is presented. Two distinct spectral slope regions ( 275-295 nm and 350-400 nm) within log-transformed absorption spectra were used to compare DOM from contrasting water types, ranging from wetlands (Great Dismal Swamp and Suwannee River) to photobleached oceanic water ( Atlantic Ocean). On the basis of DOM size-fractionation studies ( ultrafiltration and gel filtration chromatography), the slope of the 275-295- nm region and the ratio of these slopes (SR; 275-295- nm slope : 350-400- nm slope) were related to DOM molecular weight ( MW) and to photochemically induced shifts in MW. Dark aerobic microbial alteration of chromophoric DOM ( CDOM) resulted in spectral slope changes opposite of those caused by photochemistry. Along an axial transect in the Delaware Estuary, large variations in SR were measured, probably due to mixing, photodegradation, and microbial alteration of CDOM as terrestrially derived DOM transited through the estuary. Further, SR varied by over a factor of 13 between DOM-rich wetland waters and Sargasso Sea surface waters. Currently, there is no consensus on a wavelength range for log-transformed absorption spectra. We propose that the 275-295- nm slope be routinely reported in future DOM studies, as it can be measured with high precision, it facilitates comparison among dissimilar water types including CDOM-rich wetland and CDOM-poor marine waters, and it appears to be a good proxy for DOM MW. © 2008, by the American Society of Limnology and Oceanography, Inc

    The impact of flooding on aquatic ecosystem services

    Get PDF
    Flooding is a major disturbance that impacts aquatic ecosystems and the ecosystem services that they provide. Predicted increases in global flood risk due to land use change and water cycle intensification will likely only increase the frequency and severity of these impacts. Extreme flooding events can cause loss of life and significant destruction to property and infrastructure, effects that are easily recognized and frequently reported in the media. However, flooding also has many other effects on people through freshwater aquatic ecosystem services, which often go unrecognized because they are less evident and can be difficult to evaluate. Here, we identify the effects that small magnitude frequently occurring floods (\u3c 10-year recurrence interval) and extreme floods (\u3e 100-year recurrence interval) have on ten aquatic ecosystem services through a systematic literature review. We focused on ecosystem services considered by the Millennium Ecosystem Assessment including: (1) supporting services (primary production, soil formation), (2) regulating services (water regulation, water quality, disease regulation, climate regulation), (3) provisioning services (drinking water, food supply), and (4) cultural services (aesthetic value, recreation and tourism). The literature search resulted in 117 studies and each of the ten ecosystem services was represented by an average of 12 ± 4 studies. Extreme floods resulted in losses in almost every ecosystem service considered in this study. However, small floods had neutral or positive effects on half of the ecosystem services we considered. For example, small floods led to increases in primary production, water regulation, and recreation and tourism. Decision-making that preserves small floods while reducing the impacts of extreme floods can increase ecosystem service provision and minimize losses

    Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission

    Get PDF
    NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (similar to 25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available

    Global urban environmental change drives adaptation in white clover

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    London Trauma Conference 2015

    Full text link

    Compositional heterogeneity within oceanic particulate organic matter

    No full text
    Thesis (Ph. D.)--Joint Program in Oceanography, Massachusetts Institute of Technology/Woods Hole Oceanographic Institution, 1998.Includes bibliographical references.by Elizabeth C. Minor.Ph.D
    • 

    corecore