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The interaction of the vertically variable UV-visible radia-
tion field and mixing in the surface waters of aquatic systems
has long been appreciated as a fundamental factor affecting
photosynthesis (e.g., Falkowski 1983; Lewis et al. 1984a,
1984b; Falkowski and Wirick 1981) and nonbiological pho-
toreactions such as photodegradation of natural and anthro-
pogenic organic compounds in lentic environments (e.g.,
Miller et al. 2002; Tixier et al. 2003). However, the interaction
of light and mixing remains poorly understood, especially in
dynamic lotic environments, which are characterized by tem-
porally varying advection as a function of flow, varying water

clarity in high flow versus base flow conditions, and by vary-
ing canopy cover. In this study, we performed preliminary
tests to examine the feasibility of a light integrator (in situ
actinometer) to measure the light exposure/light history of
parcels of water in a Lagrangian sense. This integrator is based
on the simple idea of deploying two fluorescent dyes in a
known ratio within a chosen aquatic system: one of the dyes
(fluorescein) is sensitive to light exposure and one (rhodamine
WT) is relatively photostable. Theoretically, by measuring the
ratio of their concentration over time, one can estimate the
actual light exposure of a parcel of water and its constituents.
Such an in situ actinometer would complement existing Euler-
ian methods of light measurement techniques. A Lagrangian
approach to light field characterization would be more appro-
priate for investigating the photochemical response of species
that also “go with the flow”: those found in dissolved, col-
loidal, and small-particle phases.

Fluorescent dyes have been commonly used as tracers in
water in a variety of aquatic systems, and their applicability
has been extensively evaluated for specific systems (Smart and
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Abstract
Light is a critical parameter in aquatic ecosystems, affecting primary production and in situ photochemistry.

However, measuring light exposure for suspended particles or dissolved components in a dynamic water col-
umn can be challenging with existing Eulerian approaches. Here, we assess the simultaneous deployment of two
dyes differing in photolability (rhodamine WT and fluorescein) as a Lagrangian measure of sunlight exposure
in a lotic system. Fluorescein is sensitive to light exposure; rhodamine WT is relatively photostable. We exam-
ined dye fluorescence at various pH, salinity, and temperature conditions. We also tested dye photolability as a
function of pH and wavelength range. In conjunction with this laboratory work, we performed initial field test-
ing of the dual-dye approach in a stream on the north shore of Lake Superior, USA. Irradiation of the dyes using
long-pass filters identified wavelengths ≥ 420 nm as responsible for the vast majority of the loss of fluorescein
fluorescence, with rhodamine appearing relatively photostable in these short-term studies across the wave-
length ranges tested. Dye response to irradiation is pH-sensitive; the dual-dye approach will require additional
calibration for acidic or basic waters and should be used with caution in aquatic systems undergoing strong (sev-
eral pH unit) changes in pH. Field testing showed that the fluorescein to rhodamine WT ratio decreased approx-
imately linearly with light exposure. The dual-dye methodology shows promise as an in situ light sensor appli-
cable to water column species in lotic systems if temperature is recorded, and the pH range is measured and rel-
atively stable (e.g., varies by < 1 unit).
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Laidlaw 1977; Kasnavia et al. 1999; Klonis and Sawyer 2000;
Dierberg and DeBusk 2005; Chua et al. 2007; Upstill-Goddard
2008). In order to be a good tracer, these dyes must have high
fluorescence quantum yields, high solubility, negligible back-
ground concentrations, and be inert to (or predictably and
reproducibly affected by) chemical and biological factors (i.e.,
change in pH, change in temperature, particle sorption, and
microbial uptake) within the aquatic system of interest. Most
tracer dyes have ionic functional groups, making them soluble
in water; however, these functional groups are often pH sensi-
tive; with the resulting change in structure causing changes in
dye fluorescence and sorption characteristics (Smart and Laid-
law 1977; Kasnavia et al. 1999).

Rhodamine WT (Fig. 1) was specifically designed to be an
inexpensive and effective tracer for water flow (Smart and
Laidlaw 1977) and is one of the most commonly used dyes for
tracer studies. While often considered conservative (Upstill-
Goddard 2008), it has been shown to sorb to particles, espe-
cially organic-rich and metal-oxide coated ones (Vasudevan et
al. 2001; Smart and Laidlaw 1977), and must be used with care
in particle rich and organic rich systems, such as wetlands
(Dierberg and DeBusk 2005). Complicating the sorption issue
is that tracer grade rhodamine WT often consists of 2 isomers
(Shiau et al. 1993; Vasudevan et al. 2001) that have different
sorption characteristics (Vasudevan et al. 2001). Rhodamine
WT is somewhat photoreactive (Abood et al. 1969), but its
photolytic loss has been reported as less than five percent for
an 11.5-d deployment in North Sea surface waters (Upstill-
Goddard et al. 2001) placing it in a usable range as a conser-
vative tracer in coastal marine systems. Rhodamine WT does
show pH sensitivity, with its fluorescence dropping dramati-
cally below pH 5 (Smart and Laidlaw 1977), and its partition
into organic phases (and likely sorption to organic particles)
increasing with decreasing pH (Kasnavia et al. 1999). The rel-
evant pKa for rhodamine WT in natural waters is between 4.7
and 5.1, which refers to the interchange between either the +1
charged species or the zwitterion and the –1 charged species
(Shiau et al. 1993; Kasnavia et al. 1999; Vasudevan et al. 2001).

Fluorescein (Fig. 1) is another dye commonly used for
aquatic tracer work. It has been shown to exhibit low particle
sorption to mineral phases and moderate sorption to organic
material (e.g., Smart and Laidlaw 1977), has been used with
success in brackish water aquifers, and appears to be unaf-
fected by salinity (Chua et al. 2007). Fluorescein is highly sus-
ceptible to photolytic losses (Smart and Laidlaw 1977) and is
thus more commonly used in groundwater or aquifer studies
rather than in surface water work (Chua et al. 2007). Fluores-
cein is sensitive to pH, shifting among five to six different
structures, with different fluorescence characteristics as the pH
changes. Martin and Lindqvist (1975) report pKa1

([H+][H2Fl]/[H3Fl+] where “Fl” represents a deprotonated fluo-
rescein molecule) to be 2.2, pKa2 ([H+][HFl–]/[H2Fl]) to be 4.4,
and pKa3 ([H+][Fl2–]/[HFl–]) to be 6.7, and further discuss that
there are three neutral forms of fluorescein, which have vary-

ing light absorption and fluorescence properties.
Both fluorescein and rhodamine WT fluorescence have also

been shown to be functions of temperature, showing
decreases in fluorescence as temperature increases (Smart and
Laidlaw 1977). Rhodamine WT is more sensitive to tempera-
ture changes than fluorescein (e.g., rhodamine fluorescence
doubles (~100% increase) as temperature decreases from 25°C
to 0°C while fluorescein fluorescence increases by approxi-
mately 10% over the same temperature range, as shown by
Smart and Laidlaw 1977, and our own data).

Whereas both dyes have often been used as water tracers,
the potential of fluorescein and rhodamine WT as light sen-
sors is just beginning to be explored. The first attempt to apply
these in a quantitative sense has been to develop inexpensive
Eulerian sensors. Bechtold and coworkers (2012) placed multi-
ple vials or plastic bags containing either fluorescein or rho-
damine in fixed locations on a stream bed and the loss of flu-
orescence over time was related to PAR sensor data to
determine fluorescence decay rates as a function of light expo-
sure. These dyes are also beginning to be applied as light sen-
sors in pulsed injection approaches (Austin et al. 2010; Welsh
2012; Cullin et al. 2013), but these attempts have not yet
addressed critical dye parameters, such as the wavelength
range of light affecting fluorescence response and pH effects
on dye fluorescence, and they have been applied in more
qualitative rather than quantitative approaches.

The goal of this study is to further the coupling of fluores-
cein and rhodamine WT to make a Lagrangian light integra-
tor. We performed preliminary lab testing to evaluate the dyes’
sensitivity to salinity, pH, temperature, and the presence of
natural stream dissolved material. We also constrained the
integrator’s wavelength range of response and pH effects on
dye photodegradation. We then conducted field testing in
Amity Creek (Duluth, Minn., USA), located on the north shore
of Lake Superior, across a range of water flows that included
both base flow and high flow conditions. Finally, we per-
formed calibrations of dye response relative to PAR irradiation.
This study, therefore, represents a proof of concept application
of the Lagrangian dual dye approach.

Materials and procedures
Reagents and samples

For all lab and field experiments, the following chemicals
were used: fluorescein (“Uranine K Liquid,” manufactured by
Keystone, item ID 801-073-42, lot number A208F209, where
the fluorescein is present as the dipotassium salt) and Keyacid
Rhodamine WT Liquid (“rhodamine WT,” manufactured by
Keystone, item ID 703-010-27, lot number A207K221). These
liquids were viscous, making precise delivery of volumes chal-
lenging; thus they were diluted into working solutions of dye
in tap water or deionized water, and these solutions were then
used for the experiments. For each experiment or deployment,
the same working solution was used for initial, exposed, and
control samples (as described below). We present concentra-
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tions as both volume dye liquid per volume total solution (as
is usual in the tracer dye community) and as moles per liter.
Molarity (M) was determined from UV-visible analysis of
selected dye solutions (absorbances at 490 and 550 nm for flu-
orescein and rhodamine WT, respectively) and published
extinction coefficients (65,000 M–1cm–1 at pH 7 and 490 nm
for fluorescein, Mota et al. 1991; and 87,000 M–1 cm–1 for rho-
damine WT at pH 5.6 and 550 nm, Tai and Rathbun 1988).
Shiau et al. (1993) report that the different isomers of rho-
damine WT, while varying in light absorption characteristics
in the UV range, show very similar absorption at higher wave-
lengths; therefore we feel confident applying a published
extinction coefficient at 550 nm even if the proportional iso-
mer composition may be different in our rhodamine WT solu-
tion. Solutions and their UV-visible absorbances were used to

calculate the relationship between dye liquid concentration
and dye molarity, which was then used to calculate all other
concentrations.

For lab tests of natural stream water photoresponse (i.e., the
photobleaching of colored dissolved organic matter or
CDOM), an Amity Creek sample was taken during high flow
on 30 September 2010. The sample was filtered through a
Whatman GF/F filter and then a Whatman Polycap aqueous
solution 0.2 μm-filter capsule (Type 18056) within 24 hours of
sampling. It was then stored in the dark at 4°C for several
months until use. It was filtered again (0.2 μm) less than 24
hours before the irradiation experiments (described below). It
is acknowledged that natural samples will change in both dis-
solved organic carbon (DOC) and UV-visible absorbance char-
acteristics upon storage, but these changes are within (and
often much less) than variations seen within the same stream
under different flow characteristics (Macdonald and Minor
2013). While not performed on this sample, we have tested
storage effects on samples from 5 local streams stored 52 to
119 days (Macdonald and Minor 2013); the average DOC loss
upon storage was 15% (n = 12, range 0% to 30%); the ratio of
absorbance at 250 nm to 365 nm (e2/e3) went up in 2 of 13
samples (average increase 25%) and down in 11 of 13 samples
(average decrease 5%, range 0% to 13%). We felt that such
variations were acceptable in a proof of concept test of the
wavelength response of CDOM photobleaching relative to dye
photobleaching.
Fluorescence measurements

Fluorescein and rhodamine fluorescence was monitored
using Sea Point immersible fluorometers and an Onset ther-
mister (temperature probe), with voltages recorded with an
Onset 4-channel datalogger. The Sea Point rhodamine WT flu-
orometer had an excitation wavelength of 540 ± 15 nm and
emission wavelength of 610 ± 15 nm. The Sea Point fluores-
cein fluorometer had an excitation wavelength of 475 ± 10
nm and an emission wavelength of 530 ± 20 nm. Raw fluores-
cence voltages were corrected for background fluorescence
and converted to dye concentration using temperature data
and a lab-determined temperature calibration. The changes in
these fluorescence-based concentrations as a function of sam-
ple treatment (e.g., irradiation) are presented as the ratio of
fluorescein (F) to rhodamine WT (R) in treated sample nor-
malized to the ratio of fluorescein to rhodamine WT in the
initial untreated sample (hence (F/R)/(F/R)o). This ratio is
introduced because it acts to isolate light-mediated effects
from those of water motion. Within in situ dye deployments,
both dyes will diffuse and advect similarly. Therefore, in the
absence of light, the ratio will remain the same during a
downstream deployment; a change in the ratio indicates light
exposure.
Ancillary measurements

UV-visible absorbance measurements of dye samples and
stream water samples were performed using a Genesys 6 spec-
trophotometer (Thermo Fisher Scientific) and 1-cm quartz
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Fig. 1. The molecular structures of the dyes used in this study. 



cuvettes. MilliQ water was used as the blank. A Eutech Instru-
ment Waterproof pHTestr 20 calibrated with WTW Technical
Buffers (pH of 4.01 and 7.00) was used to determine pH. Rapid
lower-resolution pH measurements (~ ±0.5 pH units) were
taken using Whatman indicator papers.
Laboratory irradiations

Lab irradiations were performed in either matching 500-mL
quartz round-bottom flasks (with foil-wrapped 500-mL borosili-
cate flasks as dark controls) or in matching wide-mouth 20-mL
vials wrapped in foil, with irradiation coming from overhead
into the openings, which were either left uncovered, covered
with foil, or covered with filters allowing specific wavelengths of
light to pass. The irradiations were performed in a QSun Solar
Simulator, producing 0.56 W/m2 per nm at 340 nm, and samples
were cooled by partial immersion in a water bath set at approx.
25°C. The solar simulator provides approximately twice the
spring to summer irradiance seen in northern Minnesota. For
example, noon direct normal irradiance at 332 nm on 21 June
2012 in Grand Rapids, Minn., USA, 47°10.8’ N, 93°31.8’ W, was
0.33 W/m2 per nm, (http://uvb.nrel.colostate.edu/UVB/da_Lan-
gleyIrradiance.jsf) and comparison of dye response in the solar
simulator versus natural mid-day spring sunlight in Duluth,
Minn., USA (10 Apr 2009) showed that the rate of fluorescein
photodegradation in the solar simulator was approximately
twice the rate in natural sunlight.
Stream deployments

For stream deployments, 500 mL dye solution (22 parts per
thousand (ppt) Keyacid Rhodamine WT liquid, i.e., 2 × 10–2 M
rhodamine WT, and 78 ppt Uranine K Liquid, i.e., 6 × 10–2 M
fluorescein; in tap water) was added to Amity Creek surface
water. The same fluorometers used in lab tests were deployed,
along with a temperature probe, 41 m downstream of the ini-
tial dye deployment, to read initial dye concentrations in the
stream. Voltage measurements were sent to a data logger every
2 seconds. After the initial dye mixture passed, the fluorome-
ters were taken to sites farther downstream, where they were
placed in the stream until the dyes passed. The total reach for
all deployments (n = 6) was 1.70 km.

During four of the Amity Creek dye deployments, two con-
trols were also monitored. These controls consisted of 6 parts
per million (ppm) Keyacid Rhodamine WT liquid (4 × 10–6 M)
and 20 ppm Uranine K Liquid (1 × 10–5 M fluorescein) in creek
water (4 L aliquots) placed in matching open-topped
polypropylene containers (33 cm × 13.5cm × 12 cm). One con-
tainer was placed in the stream in a place exposed to ambient
sun, thus acting as a light control (LC). The other container
was placed in the stream in the shade and was wrapped with
a black plastic bag. This container acted as a dark control (DC).
The control containers were sampled at the beginning, part-
way through and at the end of the deployment. These samples
were brought back to the lab where they were analyzed using
the field fluorometers and temperature probe. Data were then
temperature and background corrected, as well as converted to
dye concentration based upon calibration curves.

Statistical analysis (t-tests and linear correlations) was per-
formed using SPSS and Excel. Unless otherwise stated, signifi-
cance was determined with a probability value (p value) of p <
0.05.
Calibration of fluorescein response relative to PAR expo-
sure

To test dye photobleaching in response to natural sunlight
exposure, we irradiated duplicate aliquots of a known concen-
tration of fluorescein dye (0.077 ppm or 1.9 × 10–7 M) in phos-
phate buffer (pH 7.5, 0.1M) and duplicate aliquots of dye mix-
ture (0.08ppm (2 × 10–7 M) fluorescein and 0.09 ppm (6 × 10–8

M) rhodamine) in the same phosphate buffer. The irradiations
were performed using matching 500 mL borosilicate round
bottom flasks placed in a flow-through water-cooled chamber
(18 to 23°C) filled with Lake Superior surface water and
exposed to natural sunlight at 47°10’N, 91°15′W on 19 Aug
2013, starting at 12:24 PM Central Daylight Savings time and
continuing to 4:23 PM. Fluorescein fluorescence was measured
using a Turner 10AU Fluorometer. The change in fluorescein
fluorescence response was measured as a function of natural
sunlight photon dose measured with a surface PAR sensor
placed less than 100 feet from the water-cooled chamber (QSR
2200 Biospherical, calibrated January 2013).

Assessment
Lab experiments

Fluorescence characteristics of the two dyes
The first questions addressed were whether the fluores-

cence of the two dyes was separable using appropriate excita-
tion and emission wavelengths and whether there was
quenching of fluorescence when the two dyes were mixed
together. These questions were addressed by measuring known
phosphate-buffered (pH 6.7) solutions (n = 3) of fluorescein
using the excitation and emission characteristics of rho-
damine WT and vice versa, and then by measuring mixtures
of the two dyes (in triplicate) targeting either the fluorescein
or rhodamine fluorescence (Table 1). There was no measurable
fluorescence of fluorescein (when compared with the buffer
blank) using the rhodamine fluorometer and very little rho-
damine fluorescence when the rhodamine solution was mea-
sured with the fluorescein fluorometer. t tests were used to
compare the results from the single dye replicates versus the
dye mixture replicates (using the appropriate fluorometers for
each dye); these showed that the data means for each dye were
statistically different for the 2 dye mixture versus the single
dye solutions at α = 0.05 but not at α = 0.01. However,
although the difference is significant at α = 0.05, it is small,
leading to < 4% increases in rhodamine WT measurements
and < 7% increases for fluorescein measurements when the 2-
dye mixtures are measured relative to the single mixtures. The
single-dye versus dye mixture test was then repeated by
adding the dyes to sterile-filtered stream water from Oregon
Creek (Duluth, Minn., USA, pH = 8.6). With stream water solu-
tions, the fluorescence voltage responses for each dye and the
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“cross-talk” results were very similar to those seen in the
buffer solutions (Table 1). The results for fluorescein again
showed increases of < 7% for the dye mixture versus the sin-
gle dye sample; however, the same concentrations of rho-
damine alone (n = 3) and rhodamine in the dye mixture (n =
3) showed no difference in fluorescence response (4.50 ± 0.05
V versus 4.5 ± 0.1 V).

The effect of temperature on dye fluorescence was exam-
ined between 2°C to 40°C. Fluorescein and rhodamine stock
solutions were diluted separately to make 0.1 ppm (9 × 10–8 M
fluorescein) and 10 ppm (7 × 10–6 M rhodamine WT) solu-
tions, consecutively. Each working solution (1.0 L) was placed
separately into a beaker and cooled to approximately 2°C. A
stir bar was added to each beaker, which was then placed on a
hot plate/stirrer. Temperature and fluorescence probes were
also placed into each beaker, and data were recorded every 2
seconds until the solutions reached 40°C. Both rhodamine WT
and fluorescein showed an exponential relationship between
fluorescence and temperature (Eq. 1) as reported by Smart and
Laidlaw (1977). Our temperature exponent (n) for fluorescein
was 0.0036°C–1, which agreed with Smart and Laidlaw’s (1977)
value using the equation

(1)

where Fs is the fluorescence at a standard temperature (ts), and
F is fluorescence at sample temperature (t). Our rhodamine
WT temperature exponent was 0.026°C–1, comparable with
Smart and Laidlaw’s (1977) value of 0.027°C–1 using the same
equation. Note that Smart and Laidlaw (1977) used a ts of 0°C,
while data in this study (unless otherwise stated) was con-
verted to fluorescence at a standard temperature of 25°C.

Additional lab tests showed that the fluorescence of fluo-

rescein increased by over a factor of 2 with pH over the pH
range of 4.89–9.04, while the fluorescence of rhodamine WT
was unaffected over this range, which is consistent with Smart
and Laidlaw’s (1977) findings that rhodamine WT fluores-
cence is affected significantly only below pH 5.0. Thus, for
field work, it is recommended to normalize fluorescent
response to initial in situ dye fluorescence (as done in this
study) and to measure the in situ pH as well.

Dye response upon irradiation; the effect of wavelength
The wavelength range of light to which the dye pair is sen-

sitive was examined using the QSun solar simulator. To deter-
mine if the dye pair would act as an appropriate light sensor
for use in studies of the photobleaching of natural dissolved
organic matter, we also assessed the wavelength range and
time of response for photobleaching of DOM (as assessed by
changes in UV-visible absorbance) from our experimental
stream system (Amity Creek). Sterile-filtered stream water
from Amity Creek (sampled 30 September 2010, in conjunc-
tion with one of the high flow field deployments described
below) was irradiated using the same irradiation period and
wavelength ranges as used for studying the dye solutions. To
examine the wavelength response of the dyes’ fluorescence
ratio, phosphate-buffered (0.24 M, pH 7, made in deionized
water) dye solutions (9.7 ppm Uranine K Liquid [7 × 10–6 M
fluorescein] and 2.7 ppm Rhodamine WT Liquid [2 × 10–6 M
rhodamine WT]) were prepared. Aliquots of the dye solution
were placed into wide-mouthed (2.1 cm diameter) clear-glass
20-mL vials (5.5 cm in length). The vials were wrapped in alu-
minum foil, leaving the top exposed to light. Exposures were
performed in duplicate using four long-pass filters (345, 360,
400, and 420 nm) placed over the vial openings. Two sample
vials were left open to act as full-light controls. An additional
set of vials (n = 2, “initial”) was placed in a refrigerator, while

= ( )−F Fes
n t ts
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Table 1. Relative fluorescence of standard dye solutions (prepared in triplicate in phosphate buffer or sterile-filtered water from Ore-
gon Creek, Duluth, Minn., USA). A test of peak-overlap and quenching issues. 

Fluorescence response (V) Fluorescence response (V) 
from the rhodamine from the fluorescein 
fluorometer corrected fluorometer corrected 

Sample to 0° using Eq. 1 to 0° using Eq. 1

Rhodamine WT solution (2 × 10–7 M rhodamine WT 4.53 ± 0.03 0.0102 ± 0.0006
in phosphate buffer, pH 6.74)

Fluorescein solution (6 × 10–8 M in phosphate buffer, pH 6.74) 0.022 ± 0.001 2.308 ± 0.09
Mixed dye solution (Rhodamine WT (at 2 × 10–7M and fluorescein 4.71 ± 0.09 2.47 ± 0.04

at 6 × 10–8 M in phosphate buffer, pH 6.74)
Phosphate buffer, pH 6.74 0.020 ± 0.001 0.0051 ± 0.0006
Rhodamine WT solution (2 × 10–7 M rhodamine WT 4.50 ± 0.06 0.043 ± 0.001

in filtered stream water, pH = 8.6)
Fluorescein solution (6 × 10–8 M in filtered stream water, pH = 8.6) 0.040 ± 0.000 2.79 ± 0.03
Mixed dye solution (Rhodamine WT (at 2 × 10–7M and fluorescein 4.55 ± 0.11 2.98 ± 0.08

at 6 × 10–8 M in filtered stream water, pH = 8.6)
Filtered stream water, pH = 8.6 0.034 ± 0.000 0.038 ± 0.000



a third set (n = 2, “dark control”) was wrapped completely in
foil and placed in the solar simulator. The sample and dark
control vials were partially submerged in a water bath at
approx. 25°C in the QSun Solar Simulator for an exposure
time of 50 min. After exposure, fluorescence was measured on
both the exposed and control samples.

The dye test described above was performed using solutions
visibly colored by the dyes themselves. The experiment was
repeated with a dilute dye solution containing 1 ppm Uranine
K Liquid (9 × 10–7 M fluorescein) and 0.3 ppm Keyacid Rho-
damine WT Liquid (2 × 10–7 M rhodamine WT). Using the
same long-pass filters as before, aliquots of this dye solution
were irradiated for three hours in the QSun Solar Simulator,
and initial, control, and exposed samples were analyzed. For
both dye irradiation experiments, the dark control and initial
samples gave the same fluorescence response, indicating no
degradation of dye fluorescence.

To compare the wavelength response and photodegrada-
tion rates of the dual-dye indicator with those for the photo-
bleaching of stream DOM, the irradiation experiment was
replicated replacing the dye solutions with 20-mL aliquots of
sterile-filtered Amity Creek water. The photobleaching of
DOM in the stream water aliquots was assessed by UV-vis spec-
trophotometry and the resultant rates of photobleaching and
wavelength ranges responsible were compared with the
changes in dye fluorescence determined in the previous exper-
iment.

Both CDOM and the dyes were measurably affected over
the same timescale of exposure in the QSun Solar Simulator,
but differed in wavelength response (Fig. 2 versus Fig. 3).
CDOM responded mainly to the UVA range of light (345-400
nm range), consistent with results reported in Granéli et al.
(1998) for lake samples from Sweden and Brazil, and Larson et

al. (2007) for water from forested streams in the Lake Superior
region. In contrast, the dye solutions, both concentrated and
dilute, were degraded at wavelengths at and/or above 420 nm
(our longest wavelength range long-pass filter). The fluores-
cence loss was mainly due to fluorescein degradation (Fig. 3).
The dyes are thus applicable to assessing the photosyntheti-
cally active radiation (PAR) rather than the UV portion respon-
sible for the majority of CDOM photobleaching.

Dye response upon irradiation; pH effects
The effect of pH on dye photodegradation was examined

by irradiating solutions of the dye buffered at pH levels rang-
ing from 5 to 9 (Table 2). Ninety minute irradiations were per-
formed in the QSun solar simulator (water bath temperature
23°C to 27°C) using 500-mL quartz round bottom flasks
(diameter 10.9 cm) containing 300-mL of buffered dye solu-
tions (4 × 10–2 ppm of Uranine K Liquid [3 × 10–8 M fluores-
cein], and 1 × 10–2 ppm of Rhodamine WT Liquid [8 × 10–9 M
Rhodamine WT]). Dark controls consisted of 300-mL aliquots
of each buffered dye solution in 500-mL borosilicate round
bottom flasks covered with aluminum foil and placed in the
solar simulator. All irradiated and control samples were mea-
sured using Sea Point fluorescein and rhodamine fluorome-
ters. Temperature and pH were also recorded at the time of the
fluorescence measurements.

Fluorescein was photo-labile across the entire pH range, but
showed maximum photo-lability at pH 7.2 (Fig. 4). Rho-
damine WT was photo-stable from pH 4.9 to pH 8.1, but was
photolabile from pH 8.3 to 9.0. The apparent photo-lability of
rhodamine at pH values of 8 to 9 may be due to the carbonate
buffer used. Carbonate radicals may have been formed from
interaction with photochemically produced OH•, thus leading
to indirect photolysis of the rhodamine WT (e.g., Schwarzen-
bach et al. 2003), rather than a direct photochemical reaction
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Fig. 2. Solar simulator irradiations (performed on 11 Jan 2011) of < 0.2 μm filtered Amity Creek water (sampled on 30 September 2010) for 50 min
using long-pass filters (345, 360, 400, and 420 nm). The amount of colored dissolved organic matter (CDOM) present was measured using absorbance
coefficients (at 1-nm increments) summed over 250-400 nm. For comparison unirradiated sample (“init”) and sample irradiated with the full wavelength
range of the Q sun solar simulator (“open”) are also included. 



Minor et al. Dual dye light measurement in streams

637

Fig. 3. The ratio of buffer-solution (pH 7) dye concentrations normalized to their initial ratio [(F/R)/(F/R)0] after A. 50 min of irradiation and B. 3 h of
irradiation. Long-pass filters (345, 360, 400, 420 nm) were used to determine the wavelength ranges responsible for maximum dye response. For com-
parison, unirradiated dye solution (“init”) and dye solution irradiated with the full wavelength range of the Q sun solar simulator (“open”) are also
included. 

Table 2. Buffer solutions used in testing pH response of dye photodegradation. Dye concentrations for all solutions were 4.1 × 10–2

ppm Uranine K Liquid (3 × 10–8 M fluorescein) and 1.12 × 10–2 ppm Rhodamine WT Liquid (8 × 10–9 M rhodamine WT). 

pH Reagents Moles/L Number irradiated, number control

4.9 A.C.S. Fisher Scientific sodium acetate 0.50 2, 2
17.4 M Fisher Scientific acetic acid, HPLC grade 0.35

6.2 Arcos Organics ammonium phosphate 0.44 1, 1
17.4 M Fisher Scientific acetic acid, HPLC grade 0.35

7.2 Fisher Scientific HPLC grade ammonium acetate 0.10 1, 1
8.1 Fisher Scientific A.C.S. certified sodium bicarbonate 0.10 2, 2

Fisher Scientific A.C.S. certified 6 M HCl Small additions
8.3 Fisher Scientific A.C.S. certified sodium bicarbonate 0.10 1, 1

Fisher Scientific A.C.S. certified 6 M HCl Small additions
9.0 Fisher Scientific A.C.S. certified sodium bicarbonate 0.10 1, 1

Fisher Scientific certified A.C.S. sodium hydroxide beads Small additions



of rhodamine WT. Further studies are needed to evaluate the
high pH-response of rhodamine WT, and its relevance to nat-
ural water systems, especially those buffered by the carbonate
system.

Based upon the above results, the practical pH range for the
dual-dye approach considering rhodamine WT as a photo-
inert tracer is approximately 6 to 8 (Fig. 4), which is suitable
for many natural waters, although seawater is on the edge of
this range (Upstill-Goddard et al. 2001). The dual dye
approach can be extended outside this range; however, to do
so, both tracers may need to be modeled as photoreactive
species differing in response rate (and possibly in wavelength
range of response) from those reported here for the pH range
6-8. Our field testing site (Amity Creek, pH range 6.99-7.54 for
the summer of 2012, LakeSuperiorStreams [2009]) is within
the working range of the dual dyes using the simpler model-
ing approach (i.e., assuming rhodamine WT to be a photo-
inert tracer).
Field experiments

Initial field deployments of the dual dye integrator were
performed in Amity Creek, a local Lake Superior tributary
(Fig. 5). Although the stream is located within the city limits
of Duluth, Minn., USA, its watershed is primarily undeveloped
(71% forested, 19% grassland, 4% developed, and 3% wetland,
LakeSuperiorStreams [2009]). The dye deployment reach (1.70
km long) was upstream of the confluence of Amity Creek and
Lester River, whose combined flow, with a watershed area of
134.8 square kilometers, then drains into Lake Superior. The

dye deployments were performed across a range of flow con-
ditions, from 0.071 to 0.364 m3/s. The change in the fluores-
cence ratio of the dyes along the reach was compared to solar
radiation and PAR exposure (Table 3), which was estimated
using data from a nearby meteorological buoy. Whereas PAR
was not directly measured in either year, a PAR sensor (LI-COR
LI190, spectral response 400-700 nm) had been deployed in
2007 adjacent to a shortwave radiation sensor (Kipp and
Zonen CM3, spectral response 305-2800 nm) and a strong lin-
ear relationship (R2 = 0.99) between the two was found. This
allowed PAR to be estimated in 2010 and 2011 from shortwave
radiation data.

For each dye deployment, a 500-mL solution (2 × 10–2 M
rhodamine WT, 6 × 10–2 M fluorescein) was added to the
stream. The SeaPoint immersible fluorometers and Onset ther-
mister were submerged 41 m downstream of the initial dye
deployment, in order to read initial dye concentrations in the
stream, with voltages reported to a data logger every two sec-
onds. Downstream measurements were then taken midway
through the reach and at the end (after 1.70 km, Fig. 5).

During four of the dual dye deployments, two controls con-
sisting of both dyes plus creek water (4 × 10–6 M rhodamine
and 1 × 10–5 M fluorescein dipotassium salt in matching
polypropylene containers, 33 cm × 13.5cm × 12 cm) were also
monitored to compare with the more complex in-stream con-
dition. These controls were not subject to variable particle
loadings downstream, had controlled depths (without
riffle/pool dynamics), and eliminated advection as a variable.
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Fig. 4. Corrected dye ratio ([F/R]/[F/R]0) versus pH value after irradiation for 90 min in a solar simulator. Replicate samples were treated at pH 4.9 and
8.1 and are shown in gray. 



One container, the light control (LC) was left in the stream
(for cooling) and exposed to ambient sunlight. The other con-
tainer, the dark control (DC) was placed in the stream in the
shade, covered, and wrapped with a black plastic bag. Each
control was sampled two to three times throughout the

deployment time, using 500 mL plastic bottles. The first sam-
ple was taken at the beginning of the deployment, a second
was taken about half-way through the deployment (when pos-
sible), and the last sample was taken at the end of the deploy-
ment. These samples were brought back to the lab where they
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Table 3. The deployment date, duration, solar radiant exposure, PAR exposure, and weather conditions. Lake Superior solar radiation
data were taken from a buoy deployed at 46.864°N 91.929°W and was averaged over the deployment time and multiplied by the time
length of the deployment (h). PAR was converted from the solar radiation data as stated in the text. 

Total deployment Solar radiant PAR exposure, 
Date Start time time (min) exposure (W/m2) × h μEinsteins/m2 Conditions

30 Sep 2010 13:45 92.9 1205.3 6.5 × 106 Sunny with intermittent clouds
17 Jun 2011 10:00 180.8 932.5 5.8 × 106 Cloudy
24 Jun 2011 10:00 42 821.1 3.5 × 106 Sunny day after large rain event
6 Jul 2011 10:40 223.6 2789.2 2.3 × 107 Sunny
13 Jul 2011 9:30 282.5 3685.4 2.8 × 107 Sunny
29 Jul 2011 13:40 268.6 3593.2 2.2 × 107 Sunny

Fig. 5. Dye deployment area along Seven Bridges Road (Duluth, MN) as seen in Google Earth showing dye input (Dye In) and the location of fluores-
cence measurements, which were performed at 46.8608°N, 92.0132°W (first pass), 46.85816°N, 92.0131°W (Bridge 4), and 46.8538°N, 92.0113°W
(Bridge 2). Solar irradiance data were taken from a Lake Superior buoy deployed at 46.864°N, 91.929°W. 



were analyzed using the field fluorometers and temperature
probe. Data were then temperature and background corrected,
and converted to dye concentration.

For statistical analyses, the dye concentration ratios were
normalized by the initial ratio of the dyes at the beginning of
the deployment. Three time points from each dye pass were
taken, one at half the peak height on the rising limb, one at
peak height, and one at half of the peak height on the falling
limb of the fluorescence response. These were averaged and
then plotted versus time and solar insolation in (W/m2)*h and
compared with the light control samples. In Amity Creek, the
dyes showed a strong photochemical response across the
tested reach that was positively correlated with solar radiation;
the light control samples showed a very similar correlation to
that seen in situ (Fig. 6).

As an additional test of dye response, the dye concentration
ratios of the initial and last measurements for each in-stream
deployment were used in a fluorescein photodegradation rate
equation (Bechtold et al. 2012):

(2)

where DyeL is the concentration (based upon fluorescence
measurement) of the light-exposed dye, Dyeinit is the con-
centration (again based upon fluorescence measurement) of
the initial dye solution, k is the experimentally determined
rate constant, and “light” is the PAR dosage. We used two
different k values, the value published in Bechtold et al.
(2012) (k = 0.014 mol photons–1 m–2) and the average k gen-
erated by our on-deck irradiation experiments (k = 0.20 mol
photons–1 m–2). The resulting calculated PAR exposures were
compared with those from the buoy data (Table 4 and
Fig. 7). Calculated PAR exposures for both k values were well

correlated with buoy data (R2 = 0.96, n = 6, p < 0.05). In-
stream dye degradation using the k value of Bechtold et al.
(2012) yielded a roughly 3-fold higher exposure rate than
given by the buoy data, while using the k value from our
calibration yielded values approximately one fifth of those
seen at the buoy. As measured whole-water Naperian
absorption coefficients (in m–1) for 400-nm light in Amity
Creek range from 3.45 to 26.63 (n = 9, sampling from Sep
through Nov 2007, Minor unpubl. data), absorption and
back-scattering by stream components are likely to lead to
an in-stream exposure for the dyes that is less that surface
PAR. Shading effects from canopy cover cannot be com-
pletely discounted; however, “full-sunlight” controls of
stream water and the in situ deployments show similar
losses of fluorescein fluorescence (Fig.6); thus, in-water
shading appears more likely. Because of such absorption and
backscatter potential in Amity Creek water, the k value
determined in our calibration, as compared to that of Bech-
told et al. (2012) seems more representative.

Comments and recommendations
In this proof-of-concept study, a dual-dye system consist-

ing of known ratios of fluorescein to rhodamine WT has been
shown to be applicable to studies of light history in natural
waters and to indicate light exposures of wavelengths ≥ 420
nm. It thus shows promise as a Lagrangian PAR sensor. To
make this system an accurate PAR actinometer will require
careful calibration of the dual dyes by comparison with exist-
ing actinometers and by determining wavelength-based fluo-
rescence bleaching quantum yields. To apply the dual-dye
integrator within a larger range of natural water systems,
more work needs to be done calibrating the dual-dye
approach at basic pH levels (pH > 8). In addition, and most

= −Dye Dye eL init
k light( )
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Fig. 6. The loss of normalized fluorescence response (F/R), i.e., fluorescence “photobleaching” versus solar radiation in W/m2 × h for the light control
samples taken at the mid-point sample time (T2, indicated by a light circle symbol) and end-point sample time (T3, indicated by a diamond symbol)
and the deployment measurements taken at the mid-point sample location (T2, indicated by a dark circle symbol) and end-point sample location (T3,
indicated by a dark square symbol.) The R2 values for linear fits to the controls and deployments were 0.861 and 0.921, respectively. 



relevant for longer term deployments (days to weeks), further
work should be done to estimate potential confounding
effects from particle absorption and/or preferential diagenesis
of one of the dyes during field deployments. Finally, the dye
deployments described here were small-scale studies across
approximately 2 km of stream reach. The applicability of this
approach at larger scales will require careful attention to dye
dispersion and the use of ship-based or AUV-based fluores-
cence measurements.
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