151 research outputs found

    Formal Synthesis of the Anti-Angiogenic Polyketide (-)-Borrelidin under Asymmetric Catalytic Control

    Get PDF
    Borrelidin (1) is a polyketide that possesses extremely potent anti-angiogenesis activity. This paper describes its formal total synthesis by the most efficient route to date. This modular approach takes optimal benefit of asymmetric catalysis and permits the synthesis of analogues; in addition, the high yields and selectivities obtained eliminate the need for separation of stereoisomers. The upper half of borrelidin has been accessed by iterative copper-catalysed asymmetric conjugate addition of methylmagnesium bromide, whereas synthesis of the lower half of the molecule was achieved by relying on asymmetric hydrogenation and cross-methathesis as key steps

    UCP3 in muscle wasting, a role in modulating lipotoxicity?

    Get PDF
    AbstractUCP3 has been postulated to function in the defense against lipid-induced oxidative muscle damage (lipotoxicity). We explored this hypothesis during cachexia in rats (zymosan-induced sepsis), a condition characterized by increased oxidative stress and supply of fatty acids to the muscle. Muscle UCP3 protein content was increased 2, 6 and 11 days after zymosan injection. Plasma FFA levels were increased at day 2, but dropped below control levels on days 6 and 11. Muscular levels of the lipid peroxidation byproduct 4-hydroxy-2-nonenal (4-HNE) were increased at days 6 and 11 in zymosan-treated rats, supporting a role for UCP3 in modulating lipotoxicity during cachexia

    Site-Selective Dehydroxy-Chlorination of Secondary Alcohols in Unprotected Glycosides

    Get PDF
    To circumvent protecting groups, the site-selective modification of unprotected glycosides is intensively studied. We show that site-selective oxidation, followed by treatment of the corresponding trityl hydrazone with tert-butyl hypochlorite and a H atom donor provides an effective way to introduce a chloride substituent in a variety of mono- and disaccharides. The stereoselectivity can be steered, and a new geminal dichlorination reaction is described as well. This strategy challenges existing methods that lead to overchlorination

    Biologically active Phytophthora mating hormone prepared by catalytic asymmetric total synthesis

    Get PDF
    A Phytophthora mating hormone with an array of 1,5-stereogenic centers has been synthesized by using our recently developed methodology of catalytic enantioselective conjugate addition of Grignard reagents. We applied this methodology in a diastereo- and enantioselective iterative route and obtained two of the 16 possible stereoisomers of Phytophthora hormone α1. These synthetic stereoisomers induced the formation of sexual spores (oospores) in A2 mating type strains of three heterothallic Phytophthora species, P. infestans, P. capsici, and P. nicotianae but not in A1 mating type strains. The response was concentration-dependent, and the oospores were viable. These results demonstrate that the biological activity of the synthetic hormone resembles that of the natural hormone α1. Mating hormones are essential components in the sexual life cycle of a variety of organisms. For plant pathogens like Phytophthora, sexual reproduction is important as a source of genetic variation. Moreover, the thick-walled oospores are the most durable propagules that can survive harsh environmental conditions. Sexual reproduction can thus greatly affect disease epidemics. The availability of synthetic compounds mimicking the activity of Phytophthora mating hormone will be instrumental for further unravelling sexual reproduction in this important group of plant pathogens.

    Ruthenacycles and Iridacycles as Catalysts for Asymmetric Transfer Hydrogenation and Racemisation

    Get PDF
    Ruthenacycles, which are easily prepared in a single step by reaction between enantiopure aromatic amines and [Ru(arene)Cl2]2 in the presence of NaOH and KPF6, are very good asymmetric transfer hydrogenation catalysts. A range of aromatic ketones were reduced using isopropanol in good yields with ee’s up to 98%. Iridacycles, which are prepared in similar fashion from [IrCp*Cl2]2 are excellent catalysts for the racemisation of secondary alcohols and chlorohydrins at room temperature. This allowed the development of a new dynamic kinetic resolution of chlorohydrins to the enantiopure epoxides in up to 90% yield and 98% enantiomeric excess (ee) using a mutant of the enzyme Haloalcohol dehalogenase C and an iridacycle as racemisation catalyst.

    On the Mechanism of the Copper-Catalyzed Enantioselective 1,4-Addition of Grignard Reagents to α,β-Unsaturated Carbonyl Compounds

    Get PDF
    The mechanism of the enantioselective 1,4-addition of Grignard reagents to α,β-unsaturated carbonyl compounds promoted by copper complexes of chiral ferrocenyl diphosphines is explored through kinetic, spectroscopic, and electrochemical analysis. On the basis of these studies, a structure of the active catalyst is proposed. The roles of the solvent, copper halide, and the Grignard reagent have been examined. Kinetic studies support a reductive elimination as the rate-limiting step in which the chiral catalyst, the substrate, and the Grignard reagent are involved. The thermodynamic activation parameters were determined from the temperature dependence of the reaction rate. The putative active species and the catalytic cycle of the reaction are discussed.

    A Predictive Model for the Pd-Catalyzed Site-Selective Oxidation of Diols

    Get PDF
    A predictive model, shaped as a set of rules, is presented that predicts site-selectivity in the mono-oxidation of diols by palladium-neocuproine catalysis. For this, the factors that govern this site-selectivity within diols and between different diols have been studied both experimentally and with computation. It is shown that an electronegative substituent antiperiplanar to the C-H bond retards hydride abstraction, resulting in a lower reactivity. This explains the selective oxidation of axial hydroxy groups in vicinal cis-diols. Furthermore, DFT calculations and competition experiments show how the reaction rate of different diols is determined by their configuration and conformational freedom. The model has been validated by the oxidation of several complex natural products, including two steroids. From a synthesis perspective, the model predicts whether a natural product comprising multiple hydroxy groups is a suitable substrate for site-selective palladium-catalyzed oxidation.</p

    Pre-cachexia in patients with stages I-III non-small cell lung cancer: Systemic inflammation and functional impairment without activation of skeletal muscle ubiquitin proteasome system.

    Get PDF
    AbstractCachexia is a prevalent phenomenon of non-small cell lung cancer (NSCLC) which is responsible for increased mortality and deterioration of physical performance. Preclinical research indicates that systemic inflammation induces cachexia-related muscle wasting through muscular Nuclear Factor-kappa B (NF-κB) signaling and subsequent ubiquitin proteasome system (UPS)-mediated proteolysis. As these pathways could be a target for early intervention strategies, it needs to be elucidated whether increased activation of these pathways is already present in early stage NSCLC cachexia. The aim of the present study was therefore to assess muscular NF-κB and UPS activation in patients with NSCLC pre-cachexia.Sixteen patients with newly diagnosed stages I–III NSCLC having <10% weight loss and ten healthy controls were studied. Body composition, systemic inflammation and exercise capacity were assessed in all subjects and NF-κB and UPS activity in vastus lateralis muscle biopsies in a subset.Patients showed increased plasma levels of C-reactive protein (CRP) (P<0.001), soluble Tumor Necrosis Factor receptor 1 (sTNF-R1) (P<0.05), fibrinogen (P<0.001) and decreased levels of albumin (P<0.001). No changes in fat free body mass or skeletal muscle NF-κB and UPS activity were observed, while peak oxygen consumption (V˙O2 peak) was significantly decreased in patients compared with healthy controls.In conclusion, this exploratory study demonstrates significantly reduced exercise capacity in NSCLC pre-cachexia despite maintenance of muscle mass and unaltered indices of UPS activation. The absence of muscular NF-κB-dependent inflammatory signaling supports the notion that transition of systemic to local inflammation is required to initiate UPS-dependent muscle wasting characteristic for (experimental) cachexia

    Intergenic regions of Borrelia plasmids contain phylogenetically conserved RNA secondary structure motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Borrelia </it>species are unusual in that they contain a large number of linear and circular plasmids. Many of these plasmids have long intergenic regions. These regions have many fragmented genes, repeated sequences and appear to be in a state of flux, but they may serve as reservoirs for evolutionary change and/or maintain stable motifs such as small RNA genes.</p> <p>Results</p> <p>In an in silico study, intergenic regions of <it>Borrelia </it>plasmids were scanned for phylogenetically conserved stem loop structures that may represent functional units at the RNA level. Five repeat sequences were found that could fold into stable RNA-type stem loop structures, three of which are closely linked to protein genes, one of which is a member of the <it>Borrelia </it>lipoprotein_1 super family genes and another is the complement regulator-acquiring surface protein_1 (CRASP-1) family. Modeled secondary structures of repeat sequences display numerous base-pair compensatory changes in stem regions, including C-G→A-U transversions when orthologous sequences are compared. Base-pair compensatory changes constitute strong evidence for phylogenetic conservation of secondary structure.</p> <p>Conclusion</p> <p>Intergenic regions of <it>Borrelia </it>species carry evolutionarily stable RNA secondary structure motifs. Of major interest is that some motifs are associated with protein genes that show large sequence variability. The cell may conserve these RNA motifs whereas allow a large flux in amino acid sequence, possibly to create new virulence factors but with associated RNA motifs intact.</p
    • …
    corecore